{"title":"化学与化学教育中的系统思维:一个有意义的化学概念学习和能力框架","authors":"Halil Tümay*, ","doi":"10.1021/acs.jchemed.3c00474","DOIUrl":null,"url":null,"abstract":"<p >Chemistry is a systems science that deals with complex-dynamic systems and systems thinking is an essential aspect of chemical practices. Thus, a systems thinking approach is needed in chemistry education for meaningful learning of the subject matter. Despite this necessity, systems thinking has not received sufficient attention in chemistry education where it is typically linked to the teaching of sustainability goals. Consequently, it is important to develop a framework for implementing systems thinking from a chemical perspective. This article analyzes the philosophy of chemistry and chemistry education literature and chemists’ reflections on chemical practice and argues that systems thinking is an indispensable aspect of our discipline through a cycle of (1) modeling systems, (2) prediction, and (3) retrospection. In light of this analysis, competence in chemical thinking and meaningful learning of chemistry is linked to systems thinking and a novice-expert continuum is defined in terms of systems thinking skills in chemistry. It is also discussed how systems thinking can be implemented in chemistry education by identifying and modeling key aspects of studied systems, in particular emergence mechanisms of systemic properties, and engaging students in modeling systems-prediction-retrospection cycles through compare-predict-observe-explain tasks that highlight the focused key aspects. This approach is exemplified in the context of atomic systems and their properties at the undergraduate level.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"100 10","pages":"3925–3933"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systems Thinking in Chemistry and Chemical Education: A Framework for Meaningful Conceptual Learning and Competence in Chemistry\",\"authors\":\"Halil Tümay*, \",\"doi\":\"10.1021/acs.jchemed.3c00474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chemistry is a systems science that deals with complex-dynamic systems and systems thinking is an essential aspect of chemical practices. Thus, a systems thinking approach is needed in chemistry education for meaningful learning of the subject matter. Despite this necessity, systems thinking has not received sufficient attention in chemistry education where it is typically linked to the teaching of sustainability goals. Consequently, it is important to develop a framework for implementing systems thinking from a chemical perspective. This article analyzes the philosophy of chemistry and chemistry education literature and chemists’ reflections on chemical practice and argues that systems thinking is an indispensable aspect of our discipline through a cycle of (1) modeling systems, (2) prediction, and (3) retrospection. In light of this analysis, competence in chemical thinking and meaningful learning of chemistry is linked to systems thinking and a novice-expert continuum is defined in terms of systems thinking skills in chemistry. It is also discussed how systems thinking can be implemented in chemistry education by identifying and modeling key aspects of studied systems, in particular emergence mechanisms of systemic properties, and engaging students in modeling systems-prediction-retrospection cycles through compare-predict-observe-explain tasks that highlight the focused key aspects. This approach is exemplified in the context of atomic systems and their properties at the undergraduate level.</p>\",\"PeriodicalId\":43,\"journal\":{\"name\":\"Journal of Chemical Education\",\"volume\":\"100 10\",\"pages\":\"3925–3933\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Education\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jchemed.3c00474\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.3c00474","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Systems Thinking in Chemistry and Chemical Education: A Framework for Meaningful Conceptual Learning and Competence in Chemistry
Chemistry is a systems science that deals with complex-dynamic systems and systems thinking is an essential aspect of chemical practices. Thus, a systems thinking approach is needed in chemistry education for meaningful learning of the subject matter. Despite this necessity, systems thinking has not received sufficient attention in chemistry education where it is typically linked to the teaching of sustainability goals. Consequently, it is important to develop a framework for implementing systems thinking from a chemical perspective. This article analyzes the philosophy of chemistry and chemistry education literature and chemists’ reflections on chemical practice and argues that systems thinking is an indispensable aspect of our discipline through a cycle of (1) modeling systems, (2) prediction, and (3) retrospection. In light of this analysis, competence in chemical thinking and meaningful learning of chemistry is linked to systems thinking and a novice-expert continuum is defined in terms of systems thinking skills in chemistry. It is also discussed how systems thinking can be implemented in chemistry education by identifying and modeling key aspects of studied systems, in particular emergence mechanisms of systemic properties, and engaging students in modeling systems-prediction-retrospection cycles through compare-predict-observe-explain tasks that highlight the focused key aspects. This approach is exemplified in the context of atomic systems and their properties at the undergraduate level.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.