通过多个衍射数据集的基于强度的层次聚类分析来阐明晶体结构的多晶型。

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Acta Crystallographica. Section D, Structural Biology Pub Date : 2023-10-01 Epub Date: 2023-10-25 DOI:10.1107/S2059798323007039
Hiroaki Matsuura, Naoki Sakai, Sachiko Toma-Fukai, Norifumi Muraki, Koki Hayama, Hironari Kamikubo, Shigetoshi Aono, Yoshiaki Kawano, Masaki Yamamoto, Kunio Hirata
{"title":"通过多个衍射数据集的基于强度的层次聚类分析来阐明晶体结构的多晶型。","authors":"Hiroaki Matsuura, Naoki Sakai, Sachiko Toma-Fukai, Norifumi Muraki, Koki Hayama, Hironari Kamikubo, Shigetoshi Aono, Yoshiaki Kawano, Masaki Yamamoto, Kunio Hirata","doi":"10.1107/S2059798323007039","DOIUrl":null,"url":null,"abstract":"<p><p>In macromolecular structure determination using X-ray diffraction from multiple crystals, the presence of different structures (structural polymorphs) necessitates the classification of the diffraction data for appropriate structural analysis. Hierarchical clustering analysis (HCA) is a promising technique that has so far been used to extract isomorphous data, mainly for single-structure determination. Although in principle the use of HCA can be extended to detect polymorphs, the absence of a reference to define the threshold used to group the isomorphous data sets (the `isomorphic threshold') poses a challenge. Here, unit-cell-based and intensity-based HCAs have been applied to data sets for apo trypsin and inhibitor-bound trypsin that were mixed post data acquisition to investigate the efficacy of HCA in classifying polymorphous data sets. Single-step intensity-based HCA successfully classified polymorphs with a certain `isomorphic threshold'. In data sets for several samples containing an unknown degree of structural heterogeneity, polymorphs could be identified by intensity-based HCA using the suggested `isomorphic threshold'. Polymorphs were also detected in single crystals using data collected using the continuous helical scheme. These findings are expected to facilitate the determination of multiple structural snapshots by exploiting automated data collection and analysis.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"79 Pt 10","pages":"909-924"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565733/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elucidating polymorphs of crystal structures by intensity-based hierarchical clustering analysis of multiple diffraction data sets.\",\"authors\":\"Hiroaki Matsuura, Naoki Sakai, Sachiko Toma-Fukai, Norifumi Muraki, Koki Hayama, Hironari Kamikubo, Shigetoshi Aono, Yoshiaki Kawano, Masaki Yamamoto, Kunio Hirata\",\"doi\":\"10.1107/S2059798323007039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In macromolecular structure determination using X-ray diffraction from multiple crystals, the presence of different structures (structural polymorphs) necessitates the classification of the diffraction data for appropriate structural analysis. Hierarchical clustering analysis (HCA) is a promising technique that has so far been used to extract isomorphous data, mainly for single-structure determination. Although in principle the use of HCA can be extended to detect polymorphs, the absence of a reference to define the threshold used to group the isomorphous data sets (the `isomorphic threshold') poses a challenge. Here, unit-cell-based and intensity-based HCAs have been applied to data sets for apo trypsin and inhibitor-bound trypsin that were mixed post data acquisition to investigate the efficacy of HCA in classifying polymorphous data sets. Single-step intensity-based HCA successfully classified polymorphs with a certain `isomorphic threshold'. In data sets for several samples containing an unknown degree of structural heterogeneity, polymorphs could be identified by intensity-based HCA using the suggested `isomorphic threshold'. Polymorphs were also detected in single crystals using data collected using the continuous helical scheme. These findings are expected to facilitate the determination of multiple structural snapshots by exploiting automated data collection and analysis.</p>\",\"PeriodicalId\":7116,\"journal\":{\"name\":\"Acta Crystallographica. Section D, Structural Biology\",\"volume\":\"79 Pt 10\",\"pages\":\"909-924\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565733/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica. Section D, Structural Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S2059798323007039\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798323007039","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在使用来自多个晶体的X射线衍射的大分子结构测定中,不同结构(结构多晶型物)的存在需要对衍射数据进行分类以进行适当的结构分析。层次聚类分析(HCA)是一种很有前途的技术,目前已被用于提取同晶数据,主要用于单一结构的确定。尽管原则上HCA的使用可以扩展到检测多晶型,但缺乏定义用于对同晶型数据集进行分组的阈值(“同构阈值”)的参考是一个挑战。在此,基于单位细胞和基于强度的HCA已应用于apo-胰蛋白酶和抑制剂结合的胰蛋白酶的数据集,这些数据集在数据采集后混合,以研究HCA在对多态性数据集进行分类方面的功效。基于单步强度的HCA在一定的“同构阈值”下成功地对多晶型进行了分类。在含有未知程度结构异质性的几个样本的数据集中,可以使用建议的“同构阈值”通过基于强度的HCA来识别多晶型。使用使用连续螺旋方案收集的数据也在单晶中检测到多晶型。这些发现有望通过利用自动化数据收集和分析来促进多个结构快照的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elucidating polymorphs of crystal structures by intensity-based hierarchical clustering analysis of multiple diffraction data sets.

In macromolecular structure determination using X-ray diffraction from multiple crystals, the presence of different structures (structural polymorphs) necessitates the classification of the diffraction data for appropriate structural analysis. Hierarchical clustering analysis (HCA) is a promising technique that has so far been used to extract isomorphous data, mainly for single-structure determination. Although in principle the use of HCA can be extended to detect polymorphs, the absence of a reference to define the threshold used to group the isomorphous data sets (the `isomorphic threshold') poses a challenge. Here, unit-cell-based and intensity-based HCAs have been applied to data sets for apo trypsin and inhibitor-bound trypsin that were mixed post data acquisition to investigate the efficacy of HCA in classifying polymorphous data sets. Single-step intensity-based HCA successfully classified polymorphs with a certain `isomorphic threshold'. In data sets for several samples containing an unknown degree of structural heterogeneity, polymorphs could be identified by intensity-based HCA using the suggested `isomorphic threshold'. Polymorphs were also detected in single crystals using data collected using the continuous helical scheme. These findings are expected to facilitate the determination of multiple structural snapshots by exploiting automated data collection and analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Crystallographica. Section D, Structural Biology
Acta Crystallographica. Section D, Structural Biology BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
4.50
自引率
13.60%
发文量
216
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
期刊最新文献
The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era. EMhub: a web platform for data management and on-the-fly processing in scientific facilities. Welcoming two new Co-editors. CHiMP: deep-learning tools trained on protein crystallization micrographs to enable automation of experiments. Robust and automatic beamstop shadow outlier rejection: combining crystallographic statistics with modern clustering under a semi-supervised learning strategy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1