{"title":"利用采样数据信息实现常时延耦合神经网络的同步。","authors":"Xiang Liu;Siqin Liao;Zheng-Guang Wu;Yuanqing Wu","doi":"10.1109/TCYB.2023.3318987","DOIUrl":null,"url":null,"abstract":"In this article, a synchronization control method is studied for coupled neural networks (CNNs) with constant time delay using sampled-data information. A distributed control protocol relying on the sampled-data information of neighboring nodes is proposed. Lyapunov functional is constructed to analyze the synchronization of CNNs with constant time delay. Using Park’s integral inequality and improved free-weight matrix integral inequality, sufficient conditions are provided for CNNs to achieve synchronization with less conservatism. In addition, the maximum sampling interval is determined by transforming the sufficient conditions into an optimization problem, and an aperiodic sampling control technique is implemented to reduce the communication energy load. Finally, numerical simulations are provided to demonstrate that the proposed method is capable of achieving synchronization.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"54 8","pages":"4702-4711"},"PeriodicalIF":9.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of Coupled Neural Networks With Constant Time-Delay Using Sampled-Data Information\",\"authors\":\"Xiang Liu;Siqin Liao;Zheng-Guang Wu;Yuanqing Wu\",\"doi\":\"10.1109/TCYB.2023.3318987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a synchronization control method is studied for coupled neural networks (CNNs) with constant time delay using sampled-data information. A distributed control protocol relying on the sampled-data information of neighboring nodes is proposed. Lyapunov functional is constructed to analyze the synchronization of CNNs with constant time delay. Using Park’s integral inequality and improved free-weight matrix integral inequality, sufficient conditions are provided for CNNs to achieve synchronization with less conservatism. In addition, the maximum sampling interval is determined by transforming the sufficient conditions into an optimization problem, and an aperiodic sampling control technique is implemented to reduce the communication energy load. Finally, numerical simulations are provided to demonstrate that the proposed method is capable of achieving synchronization.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"54 8\",\"pages\":\"4702-4711\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10283870/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10283870/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Synchronization of Coupled Neural Networks With Constant Time-Delay Using Sampled-Data Information
In this article, a synchronization control method is studied for coupled neural networks (CNNs) with constant time delay using sampled-data information. A distributed control protocol relying on the sampled-data information of neighboring nodes is proposed. Lyapunov functional is constructed to analyze the synchronization of CNNs with constant time delay. Using Park’s integral inequality and improved free-weight matrix integral inequality, sufficient conditions are provided for CNNs to achieve synchronization with less conservatism. In addition, the maximum sampling interval is determined by transforming the sufficient conditions into an optimization problem, and an aperiodic sampling control technique is implemented to reduce the communication energy load. Finally, numerical simulations are provided to demonstrate that the proposed method is capable of achieving synchronization.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.