利用采样数据信息实现常时延耦合神经网络的同步。

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2023-10-12 DOI:10.1109/TCYB.2023.3318987
Xiang Liu;Siqin Liao;Zheng-Guang Wu;Yuanqing Wu
{"title":"利用采样数据信息实现常时延耦合神经网络的同步。","authors":"Xiang Liu;Siqin Liao;Zheng-Guang Wu;Yuanqing Wu","doi":"10.1109/TCYB.2023.3318987","DOIUrl":null,"url":null,"abstract":"In this article, a synchronization control method is studied for coupled neural networks (CNNs) with constant time delay using sampled-data information. A distributed control protocol relying on the sampled-data information of neighboring nodes is proposed. Lyapunov functional is constructed to analyze the synchronization of CNNs with constant time delay. Using Park’s integral inequality and improved free-weight matrix integral inequality, sufficient conditions are provided for CNNs to achieve synchronization with less conservatism. In addition, the maximum sampling interval is determined by transforming the sufficient conditions into an optimization problem, and an aperiodic sampling control technique is implemented to reduce the communication energy load. Finally, numerical simulations are provided to demonstrate that the proposed method is capable of achieving synchronization.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"54 8","pages":"4702-4711"},"PeriodicalIF":9.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of Coupled Neural Networks With Constant Time-Delay Using Sampled-Data Information\",\"authors\":\"Xiang Liu;Siqin Liao;Zheng-Guang Wu;Yuanqing Wu\",\"doi\":\"10.1109/TCYB.2023.3318987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a synchronization control method is studied for coupled neural networks (CNNs) with constant time delay using sampled-data information. A distributed control protocol relying on the sampled-data information of neighboring nodes is proposed. Lyapunov functional is constructed to analyze the synchronization of CNNs with constant time delay. Using Park’s integral inequality and improved free-weight matrix integral inequality, sufficient conditions are provided for CNNs to achieve synchronization with less conservatism. In addition, the maximum sampling interval is determined by transforming the sufficient conditions into an optimization problem, and an aperiodic sampling control technique is implemented to reduce the communication energy load. Finally, numerical simulations are provided to demonstrate that the proposed method is capable of achieving synchronization.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"54 8\",\"pages\":\"4702-4711\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10283870/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10283870/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种利用采样数据信息实现常时延耦合神经网络同步控制的方法。提出了一种基于相邻节点采样数据信息的分布式控制协议。构造了李雅普诺夫函数来分析具有恒定时延的细胞神经网络的同步问题。利用Park积分不等式和改进的自由权矩阵积分不等式,为细胞神经网络实现保守性较小的同步提供了充分条件。此外,通过将充分条件转化为优化问题来确定最大采样间隔,并采用非周期采样控制技术来降低通信能量负载。最后,通过数值模拟验证了该方法能够实现同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synchronization of Coupled Neural Networks With Constant Time-Delay Using Sampled-Data Information
In this article, a synchronization control method is studied for coupled neural networks (CNNs) with constant time delay using sampled-data information. A distributed control protocol relying on the sampled-data information of neighboring nodes is proposed. Lyapunov functional is constructed to analyze the synchronization of CNNs with constant time delay. Using Park’s integral inequality and improved free-weight matrix integral inequality, sufficient conditions are provided for CNNs to achieve synchronization with less conservatism. In addition, the maximum sampling interval is determined by transforming the sufficient conditions into an optimization problem, and an aperiodic sampling control technique is implemented to reduce the communication energy load. Finally, numerical simulations are provided to demonstrate that the proposed method is capable of achieving synchronization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
Visual-Inertial-Acoustic Sensor Fusion for Accurate Autonomous Localization of Underwater Vehicles Aeroengine Bearing Time-Varying Skidding Assessment With Prior Knowledge-Embedded Dual Feedback Spatial-Temporal GCN Interval Secure Event-Triggered Mechanism for Load Frequency Control Active Defense Against DoS Attack Bayesian Transfer Filtering Using Pseudo Marginal Measurement Likelihood Granular Computing for Machine Learning: Pursuing New Development Horizons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1