剑桥结构数据库中一百万个晶体结构的新见解和创新。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL Structural Dynamics-Us Pub Date : 2019-08-28 eCollection Date: 2019-09-01 DOI:10.1063/1.5116878
Jason C Cole, Seth Wiggin, Francesca Stanzione
{"title":"剑桥结构数据库中一百万个晶体结构的新见解和创新。","authors":"Jason C Cole,&nbsp;Seth Wiggin,&nbsp;Francesca Stanzione","doi":"10.1063/1.5116878","DOIUrl":null,"url":null,"abstract":"<p><p>The Cambridge Structural Database (CSD) is the world's largest and most comprehensive collection of organic, organometallic, and metal-organic crystal structure information. Analyses using the data have wide impact across the chemical sciences in allowing understanding of structural preferences. In this short review, we illustrate the more common methods by which CSD data influence molecular design. We show how more data could lead to more refined insights into the future using a simple example of trifluoromethylphenyl fragments, highlighting how with sufficient data one can build a reasonable model of geometric change in a chemical fragment with torsional rotation, and show some recent examples where the CSD has been used in conjunction with other methods to provide design ideas and more computationally tractable workflows for derivation of useful insights into structural design.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"6 5","pages":"054301"},"PeriodicalIF":2.3000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5116878","citationCount":"12","resultStr":"{\"title\":\"New insights and innovation from a million crystal structures in the Cambridge Structural Database.\",\"authors\":\"Jason C Cole,&nbsp;Seth Wiggin,&nbsp;Francesca Stanzione\",\"doi\":\"10.1063/1.5116878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Cambridge Structural Database (CSD) is the world's largest and most comprehensive collection of organic, organometallic, and metal-organic crystal structure information. Analyses using the data have wide impact across the chemical sciences in allowing understanding of structural preferences. In this short review, we illustrate the more common methods by which CSD data influence molecular design. We show how more data could lead to more refined insights into the future using a simple example of trifluoromethylphenyl fragments, highlighting how with sufficient data one can build a reasonable model of geometric change in a chemical fragment with torsional rotation, and show some recent examples where the CSD has been used in conjunction with other methods to provide design ideas and more computationally tractable workflows for derivation of useful insights into structural design.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"6 5\",\"pages\":\"054301\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1063/1.5116878\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5116878\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/1.5116878","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 12

摘要

剑桥结构数据库(CSD)是世界上最大、最全面的有机、有机金属和金属有机晶体结构信息集合。使用这些数据进行的分析在理解结构偏好方面对整个化学科学产生了广泛的影响。在这篇简短的综述中,我们展示了CSD数据影响分子设计的更常见方法。我们用一个三氟甲基苯基片段的简单例子展示了更多的数据如何能够对未来产生更精细的见解,强调了如何在有足够数据的情况下,建立一个合理的扭转旋转化学片段几何变化模型,并展示了一些最近的例子,其中CSD已与其他方法结合使用,以提供设计思想和更易于计算的工作流程,从而导出对结构设计的有用见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New insights and innovation from a million crystal structures in the Cambridge Structural Database.

The Cambridge Structural Database (CSD) is the world's largest and most comprehensive collection of organic, organometallic, and metal-organic crystal structure information. Analyses using the data have wide impact across the chemical sciences in allowing understanding of structural preferences. In this short review, we illustrate the more common methods by which CSD data influence molecular design. We show how more data could lead to more refined insights into the future using a simple example of trifluoromethylphenyl fragments, highlighting how with sufficient data one can build a reasonable model of geometric change in a chemical fragment with torsional rotation, and show some recent examples where the CSD has been used in conjunction with other methods to provide design ideas and more computationally tractable workflows for derivation of useful insights into structural design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
期刊最新文献
Structure and spin of the low- and high-spin states of Fe2+(phen)3 studied by x-ray scattering and emission spectroscopy. Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source. Laue-DIALS: Open-source software for polychromatic x-ray diffraction data. Spatiotemporal determination of photoinduced strain in a Weyl semimetal. High-repetition-rate ultrafast electron diffraction with direct electron detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1