{"title":"食管癌症患者复发性不良事件和生存率的贝叶斯半参数联合回归分析。","authors":"Juhee Lee, Peter F Thall, Steven H Lin","doi":"10.1214/18-AOAS1182","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a Bayesian semiparametric joint regression model for a recurrent event process and survival time. Assuming independent latent subject frailties, we define marginal models for the recurrent event process intensity and survival distribution as functions of the subject's frailty and baseline covariates. A robust Bayesian model, called Joint-DP, is obtained by assuming a Dirichlet process for the frailty distribution. We present a simulation study that compares posterior estimates under the Joint-DP model to a Bayesian joint model with lognormal frailties, a frequentist joint model, and marginal models for either the recurrent event process or survival time. The simulations show that the Joint-DP model does a good job of correcting for treatment assignment bias, and has favorable estimation reliability and accuracy compared with the alternative models. The Joint-DP model is applied to analyze an observational dataset from esophageal cancer patients treated with chemo-radiation, including the times of recurrent effusions of fluid to the heart or lungs, survival time, prognostic covariates, and radiation therapy modality.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"13 1","pages":"221-247"},"PeriodicalIF":1.3000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824476/pdf/nihms969597.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian Semiparametric Joint Regression Analysis of Recurrent Adverse Events and Survival in Esophageal Cancer Patients.\",\"authors\":\"Juhee Lee, Peter F Thall, Steven H Lin\",\"doi\":\"10.1214/18-AOAS1182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a Bayesian semiparametric joint regression model for a recurrent event process and survival time. Assuming independent latent subject frailties, we define marginal models for the recurrent event process intensity and survival distribution as functions of the subject's frailty and baseline covariates. A robust Bayesian model, called Joint-DP, is obtained by assuming a Dirichlet process for the frailty distribution. We present a simulation study that compares posterior estimates under the Joint-DP model to a Bayesian joint model with lognormal frailties, a frequentist joint model, and marginal models for either the recurrent event process or survival time. The simulations show that the Joint-DP model does a good job of correcting for treatment assignment bias, and has favorable estimation reliability and accuracy compared with the alternative models. The Joint-DP model is applied to analyze an observational dataset from esophageal cancer patients treated with chemo-radiation, including the times of recurrent effusions of fluid to the heart or lungs, survival time, prognostic covariates, and radiation therapy modality.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"13 1\",\"pages\":\"221-247\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824476/pdf/nihms969597.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-AOAS1182\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOAS1182","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Bayesian Semiparametric Joint Regression Analysis of Recurrent Adverse Events and Survival in Esophageal Cancer Patients.
We propose a Bayesian semiparametric joint regression model for a recurrent event process and survival time. Assuming independent latent subject frailties, we define marginal models for the recurrent event process intensity and survival distribution as functions of the subject's frailty and baseline covariates. A robust Bayesian model, called Joint-DP, is obtained by assuming a Dirichlet process for the frailty distribution. We present a simulation study that compares posterior estimates under the Joint-DP model to a Bayesian joint model with lognormal frailties, a frequentist joint model, and marginal models for either the recurrent event process or survival time. The simulations show that the Joint-DP model does a good job of correcting for treatment assignment bias, and has favorable estimation reliability and accuracy compared with the alternative models. The Joint-DP model is applied to analyze an observational dataset from esophageal cancer patients treated with chemo-radiation, including the times of recurrent effusions of fluid to the heart or lungs, survival time, prognostic covariates, and radiation therapy modality.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.