{"title":"多层敲除滤波器:在多分辨率下控制变量选择。","authors":"Eugene Katsevich, Chiara Sabatti","doi":"10.1214/18-AOAS1185","DOIUrl":null,"url":null,"abstract":"<p><p>We tackle the problem of selecting from among a large number of variables those that are \"important\" for an outcome. We consider situations where groups of variables are also of interest. For example, each variable might be a genetic polymorphism, and we might want to study how a trait depends on variability in genes, segments of DNA that typically contain multiple such polymorphisms. In this context, to discover that a variable is relevant for the outcome implies discovering that the larger entity it represents is also important. To guarantee meaningful results with high chance of replicability, we suggest controlling the rate of false discoveries for findings at the level of individual variables and at the level of groups. Building on the knockoff construction of Barber and Candès [<i>Ann. Statist.</i> <b>43</b> (2015) 2055-2085] and the multilayer testing framework of Barber and Ramdas [<i>J. Roy. Statist. Soc. Ser. B</i> <b>79</b> (2017) 1247-1268], we introduce the multilayer knockoff filter (MKF). We prove that MKF simultaneously controls the FDR at each resolution and use simulations to show that it incurs little power loss compared to methods that provide guarantees only for the discoveries of individual variables. We apply MKF to analyze a genetic dataset and find that it successfully reduces the number of false gene discoveries without a significant reduction in power.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"13 1","pages":"1-33"},"PeriodicalIF":1.3000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/18-AOAS1185","citationCount":"45","resultStr":"{\"title\":\"MULTILAYER KNOCKOFF FILTER: CONTROLLED VARIABLE SELECTION AT MULTIPLE RESOLUTIONS.\",\"authors\":\"Eugene Katsevich, Chiara Sabatti\",\"doi\":\"10.1214/18-AOAS1185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We tackle the problem of selecting from among a large number of variables those that are \\\"important\\\" for an outcome. We consider situations where groups of variables are also of interest. For example, each variable might be a genetic polymorphism, and we might want to study how a trait depends on variability in genes, segments of DNA that typically contain multiple such polymorphisms. In this context, to discover that a variable is relevant for the outcome implies discovering that the larger entity it represents is also important. To guarantee meaningful results with high chance of replicability, we suggest controlling the rate of false discoveries for findings at the level of individual variables and at the level of groups. Building on the knockoff construction of Barber and Candès [<i>Ann. Statist.</i> <b>43</b> (2015) 2055-2085] and the multilayer testing framework of Barber and Ramdas [<i>J. Roy. Statist. Soc. Ser. B</i> <b>79</b> (2017) 1247-1268], we introduce the multilayer knockoff filter (MKF). We prove that MKF simultaneously controls the FDR at each resolution and use simulations to show that it incurs little power loss compared to methods that provide guarantees only for the discoveries of individual variables. We apply MKF to analyze a genetic dataset and find that it successfully reduces the number of false gene discoveries without a significant reduction in power.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"13 1\",\"pages\":\"1-33\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/18-AOAS1185\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-AOAS1185\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOAS1185","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
MULTILAYER KNOCKOFF FILTER: CONTROLLED VARIABLE SELECTION AT MULTIPLE RESOLUTIONS.
We tackle the problem of selecting from among a large number of variables those that are "important" for an outcome. We consider situations where groups of variables are also of interest. For example, each variable might be a genetic polymorphism, and we might want to study how a trait depends on variability in genes, segments of DNA that typically contain multiple such polymorphisms. In this context, to discover that a variable is relevant for the outcome implies discovering that the larger entity it represents is also important. To guarantee meaningful results with high chance of replicability, we suggest controlling the rate of false discoveries for findings at the level of individual variables and at the level of groups. Building on the knockoff construction of Barber and Candès [Ann. Statist.43 (2015) 2055-2085] and the multilayer testing framework of Barber and Ramdas [J. Roy. Statist. Soc. Ser. B79 (2017) 1247-1268], we introduce the multilayer knockoff filter (MKF). We prove that MKF simultaneously controls the FDR at each resolution and use simulations to show that it incurs little power loss compared to methods that provide guarantees only for the discoveries of individual variables. We apply MKF to analyze a genetic dataset and find that it successfully reduces the number of false gene discoveries without a significant reduction in power.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.