Peng Zhang, Laurent Abel, Jean-Laurent Casanova, Rui Yang
{"title":"CRISPR定位编辑的基因分型多重测序(GMUSCLE):一种分析CRISPR编辑细胞的实验和计算方法。","authors":"Peng Zhang, Laurent Abel, Jean-Laurent Casanova, Rui Yang","doi":"10.1089/crispr.2023.0021","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) creates double-stranded breaks, the repair of which generates indels around the target sites. These repairs can be mono-/multi-allelic, and the editing is often random and sometimes prolonged, resulting in considerable intercellular heterogeneity. The genotyping of CRISPR-Cas9-edited cells is challenging and the traditional genotyping methods are laborious. We introduce here a streamlined experimental and computational protocol for genotyping CRISPR-Cas9 genome-edited cells including cost-effective multiplexed sequencing and the software Genotyping MUltiplexed-Sequencing of CRISPR-Localized Editing (GMUSCLE). In this approach, CRISPR-Cas9-edited products are sequenced in great depth, then GMUSCLE quantitatively and qualitatively identifies the genotypes, which enable the selection and investigation of cell clones with genotypes of interest. We validate the protocol and software by performing CRISPR-Cas9-mediated disruption on interferon-α/β receptor alpha, multiplexed sequencing, and identifying the genotypes simultaneously for 20 cell clones. Besides the multiplexed sequencing ability of this protocol, GMUSCLE is also applicable for the sequencing data from bulk cell populations. GMUSCLE is publicly available at our HGIDSOFT server and GitHub.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 5","pages":"462-472"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611965/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genotyping MUltiplexed-Sequencing of CRISPR-Localized Editing (GMUSCLE): An Experimental and Computational Approach for Analyzing CRISPR-Edited Cells.\",\"authors\":\"Peng Zhang, Laurent Abel, Jean-Laurent Casanova, Rui Yang\",\"doi\":\"10.1089/crispr.2023.0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) creates double-stranded breaks, the repair of which generates indels around the target sites. These repairs can be mono-/multi-allelic, and the editing is often random and sometimes prolonged, resulting in considerable intercellular heterogeneity. The genotyping of CRISPR-Cas9-edited cells is challenging and the traditional genotyping methods are laborious. We introduce here a streamlined experimental and computational protocol for genotyping CRISPR-Cas9 genome-edited cells including cost-effective multiplexed sequencing and the software Genotyping MUltiplexed-Sequencing of CRISPR-Localized Editing (GMUSCLE). In this approach, CRISPR-Cas9-edited products are sequenced in great depth, then GMUSCLE quantitatively and qualitatively identifies the genotypes, which enable the selection and investigation of cell clones with genotypes of interest. We validate the protocol and software by performing CRISPR-Cas9-mediated disruption on interferon-α/β receptor alpha, multiplexed sequencing, and identifying the genotypes simultaneously for 20 cell clones. Besides the multiplexed sequencing ability of this protocol, GMUSCLE is also applicable for the sequencing data from bulk cell populations. GMUSCLE is publicly available at our HGIDSOFT server and GitHub.</p>\",\"PeriodicalId\":54232,\"journal\":{\"name\":\"CRISPR Journal\",\"volume\":\"6 5\",\"pages\":\"462-472\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611965/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRISPR Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/crispr.2023.0021\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2023.0021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genotyping MUltiplexed-Sequencing of CRISPR-Localized Editing (GMUSCLE): An Experimental and Computational Approach for Analyzing CRISPR-Edited Cells.
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) creates double-stranded breaks, the repair of which generates indels around the target sites. These repairs can be mono-/multi-allelic, and the editing is often random and sometimes prolonged, resulting in considerable intercellular heterogeneity. The genotyping of CRISPR-Cas9-edited cells is challenging and the traditional genotyping methods are laborious. We introduce here a streamlined experimental and computational protocol for genotyping CRISPR-Cas9 genome-edited cells including cost-effective multiplexed sequencing and the software Genotyping MUltiplexed-Sequencing of CRISPR-Localized Editing (GMUSCLE). In this approach, CRISPR-Cas9-edited products are sequenced in great depth, then GMUSCLE quantitatively and qualitatively identifies the genotypes, which enable the selection and investigation of cell clones with genotypes of interest. We validate the protocol and software by performing CRISPR-Cas9-mediated disruption on interferon-α/β receptor alpha, multiplexed sequencing, and identifying the genotypes simultaneously for 20 cell clones. Besides the multiplexed sequencing ability of this protocol, GMUSCLE is also applicable for the sequencing data from bulk cell populations. GMUSCLE is publicly available at our HGIDSOFT server and GitHub.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.