Julia Franziska Brosch-Lenz, Astrid Delker, Fabian Schmidt, Johannes Tran-Gia
{"title":"人工智能在放射药物治疗剂量测定中的应用。","authors":"Julia Franziska Brosch-Lenz, Astrid Delker, Fabian Schmidt, Johannes Tran-Gia","doi":"10.1055/a-2179-6872","DOIUrl":null,"url":null,"abstract":"<p><p>Routine clinical dosimetry along with radiopharmaceutical therapies is key for future treatment personalization. However, dosimetry is considered complex and time-consuming with various challenges amongst the required steps within the dosimetry workflow. The general workflow for image-based dosimetry consists of quantitative imaging, the segmentation of organs and tumors, fitting of the time-activity-curves, and the conversion to absorbed dose. This work reviews the potential and advantages of the use of artificial intelligence to improve speed and accuracy of every single step of the dosimetry workflow.</p>","PeriodicalId":94161,"journal":{"name":"Nuklearmedizin. Nuclear medicine","volume":" ","pages":"379-388"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Use of Artificial Intelligence for Dosimetry of Radiopharmaceutical Therapies.\",\"authors\":\"Julia Franziska Brosch-Lenz, Astrid Delker, Fabian Schmidt, Johannes Tran-Gia\",\"doi\":\"10.1055/a-2179-6872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Routine clinical dosimetry along with radiopharmaceutical therapies is key for future treatment personalization. However, dosimetry is considered complex and time-consuming with various challenges amongst the required steps within the dosimetry workflow. The general workflow for image-based dosimetry consists of quantitative imaging, the segmentation of organs and tumors, fitting of the time-activity-curves, and the conversion to absorbed dose. This work reviews the potential and advantages of the use of artificial intelligence to improve speed and accuracy of every single step of the dosimetry workflow.</p>\",\"PeriodicalId\":94161,\"journal\":{\"name\":\"Nuklearmedizin. Nuclear medicine\",\"volume\":\" \",\"pages\":\"379-388\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuklearmedizin. Nuclear medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2179-6872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuklearmedizin. Nuclear medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2179-6872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
On the Use of Artificial Intelligence for Dosimetry of Radiopharmaceutical Therapies.
Routine clinical dosimetry along with radiopharmaceutical therapies is key for future treatment personalization. However, dosimetry is considered complex and time-consuming with various challenges amongst the required steps within the dosimetry workflow. The general workflow for image-based dosimetry consists of quantitative imaging, the segmentation of organs and tumors, fitting of the time-activity-curves, and the conversion to absorbed dose. This work reviews the potential and advantages of the use of artificial intelligence to improve speed and accuracy of every single step of the dosimetry workflow.