{"title":"解读纳米药物在卵巢癌症治疗中的应用:综述。","authors":"Pooja Mathur, Shailendra Bhatt, Suresh Kumar, Sweta Kamboj, Rohit Kamboj, Arpana Rana, Harish Kumar, Ravinder Verma","doi":"10.2174/0115672018253815230922070558","DOIUrl":null,"url":null,"abstract":"<p><p>The majority of deadly cancers that afflict the female reproductive system occur in the ovary. Around 1,40,000 women worldwide die from ovarian cancer each year, making it the sixth most common cancer-associated deceases among females in the United States. Modern, cutting-edge treatments like chemotherapy and surgery frequently produce full remissions, but the recurrence rate is still very high. When this crippling condition is diagnosed, there are frequently few therapeutic choices available because of how quietly it manifests. Healthcare practitioners must have a fundamental grasp of the warning signs and symptoms of ovarian cancer, as well as the imaging techniques and treatment choices available, to give the patient the best care possible. The discipline of medical nanotechnology has gained a lot of momentum in recent years in resolving issues and enhancing the detection and treatment of different illnesses, including cancer. This article gives a brief summary of types, risk factors and approaches to ovarian cancer treatment. We subsequently discussed the pathophysiology of ovarian cancer with the risk factors. This review also emphasizes the various signalling pathways involved in ovarian cancer. Our comprehensive integration of recent findings in fundamental research in the nano arena reveals the strong interest in these nanomedicines in ovarian cancer treatment. However, these nanomedicines still require more research, as indicated by the comparatively small number of clinical trials ongoing. This article will provide a reference for ovarian cancer treatment.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1180-1196"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Therapeutic Applications of Nanomedicine in Ovarian Cancer Therapy: An Overview.\",\"authors\":\"Pooja Mathur, Shailendra Bhatt, Suresh Kumar, Sweta Kamboj, Rohit Kamboj, Arpana Rana, Harish Kumar, Ravinder Verma\",\"doi\":\"10.2174/0115672018253815230922070558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The majority of deadly cancers that afflict the female reproductive system occur in the ovary. Around 1,40,000 women worldwide die from ovarian cancer each year, making it the sixth most common cancer-associated deceases among females in the United States. Modern, cutting-edge treatments like chemotherapy and surgery frequently produce full remissions, but the recurrence rate is still very high. When this crippling condition is diagnosed, there are frequently few therapeutic choices available because of how quietly it manifests. Healthcare practitioners must have a fundamental grasp of the warning signs and symptoms of ovarian cancer, as well as the imaging techniques and treatment choices available, to give the patient the best care possible. The discipline of medical nanotechnology has gained a lot of momentum in recent years in resolving issues and enhancing the detection and treatment of different illnesses, including cancer. This article gives a brief summary of types, risk factors and approaches to ovarian cancer treatment. We subsequently discussed the pathophysiology of ovarian cancer with the risk factors. This review also emphasizes the various signalling pathways involved in ovarian cancer. Our comprehensive integration of recent findings in fundamental research in the nano arena reveals the strong interest in these nanomedicines in ovarian cancer treatment. However, these nanomedicines still require more research, as indicated by the comparatively small number of clinical trials ongoing. This article will provide a reference for ovarian cancer treatment.</p>\",\"PeriodicalId\":94287,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\" \",\"pages\":\"1180-1196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018253815230922070558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018253815230922070558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deciphering the Therapeutic Applications of Nanomedicine in Ovarian Cancer Therapy: An Overview.
The majority of deadly cancers that afflict the female reproductive system occur in the ovary. Around 1,40,000 women worldwide die from ovarian cancer each year, making it the sixth most common cancer-associated deceases among females in the United States. Modern, cutting-edge treatments like chemotherapy and surgery frequently produce full remissions, but the recurrence rate is still very high. When this crippling condition is diagnosed, there are frequently few therapeutic choices available because of how quietly it manifests. Healthcare practitioners must have a fundamental grasp of the warning signs and symptoms of ovarian cancer, as well as the imaging techniques and treatment choices available, to give the patient the best care possible. The discipline of medical nanotechnology has gained a lot of momentum in recent years in resolving issues and enhancing the detection and treatment of different illnesses, including cancer. This article gives a brief summary of types, risk factors and approaches to ovarian cancer treatment. We subsequently discussed the pathophysiology of ovarian cancer with the risk factors. This review also emphasizes the various signalling pathways involved in ovarian cancer. Our comprehensive integration of recent findings in fundamental research in the nano arena reveals the strong interest in these nanomedicines in ovarian cancer treatment. However, these nanomedicines still require more research, as indicated by the comparatively small number of clinical trials ongoing. This article will provide a reference for ovarian cancer treatment.