Weijian Hua, Cheng Zhang, Lily Raymond, Kellen Mitchell, Lai Wen, Ying Yang, Danyang Zhao, Shu Liu, Yifei Jin
{"title":"基于3D打印的全尺寸人脑,适用于各种应用。","authors":"Weijian Hua, Cheng Zhang, Lily Raymond, Kellen Mitchell, Lai Wen, Ying Yang, Danyang Zhao, Shu Liu, Yifei Jin","doi":"10.1002/brx2.5","DOIUrl":null,"url":null,"abstract":"<p>Surgery is the most frequent treatment for patients with brain tumors. The construction of full-scale human brain models, which is still challenging to realize via current manufacturing techniques, can effectively train surgeons before brain tumor surgeries. This paper aims to develop a set of three-dimensional (3D) printing approaches to fabricate customized full-scale human brain models for surgery training as well as specialized brain patches for wound healing after surgery. First, a brain patch designed to fit a wound's shape and size can be easily printed in and collected from a stimuli-responsive yield-stress support bath. Then, an inverse 3D printing strategy, called “peeling-boiled-eggs,” is proposed to fabricate full-scale human brain models. In this strategy, the contour layer of a brain model is printed using a sacrificial ink to envelop the target brain core within a photocurable yield-stress support bath. After crosslinking the contour layer, the as-printed model can be harvested from the bath to photo crosslink the brain core, which can be eventually released by liquefying the contour layer. Both the brain patch and full-scale human brain model are successfully printed to mimic the scenario of wound healing after removing a brain tumor, validating the effectiveness of the proposed 3D printing approaches.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.5","citationCount":"0","resultStr":"{\"title\":\"3D printing-based full-scale human brain for diverse applications\",\"authors\":\"Weijian Hua, Cheng Zhang, Lily Raymond, Kellen Mitchell, Lai Wen, Ying Yang, Danyang Zhao, Shu Liu, Yifei Jin\",\"doi\":\"10.1002/brx2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surgery is the most frequent treatment for patients with brain tumors. The construction of full-scale human brain models, which is still challenging to realize via current manufacturing techniques, can effectively train surgeons before brain tumor surgeries. This paper aims to develop a set of three-dimensional (3D) printing approaches to fabricate customized full-scale human brain models for surgery training as well as specialized brain patches for wound healing after surgery. First, a brain patch designed to fit a wound's shape and size can be easily printed in and collected from a stimuli-responsive yield-stress support bath. Then, an inverse 3D printing strategy, called “peeling-boiled-eggs,” is proposed to fabricate full-scale human brain models. In this strategy, the contour layer of a brain model is printed using a sacrificial ink to envelop the target brain core within a photocurable yield-stress support bath. After crosslinking the contour layer, the as-printed model can be harvested from the bath to photo crosslink the brain core, which can be eventually released by liquefying the contour layer. Both the brain patch and full-scale human brain model are successfully printed to mimic the scenario of wound healing after removing a brain tumor, validating the effectiveness of the proposed 3D printing approaches.</p>\",\"PeriodicalId\":94303,\"journal\":{\"name\":\"Brain-X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brx2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D printing-based full-scale human brain for diverse applications
Surgery is the most frequent treatment for patients with brain tumors. The construction of full-scale human brain models, which is still challenging to realize via current manufacturing techniques, can effectively train surgeons before brain tumor surgeries. This paper aims to develop a set of three-dimensional (3D) printing approaches to fabricate customized full-scale human brain models for surgery training as well as specialized brain patches for wound healing after surgery. First, a brain patch designed to fit a wound's shape and size can be easily printed in and collected from a stimuli-responsive yield-stress support bath. Then, an inverse 3D printing strategy, called “peeling-boiled-eggs,” is proposed to fabricate full-scale human brain models. In this strategy, the contour layer of a brain model is printed using a sacrificial ink to envelop the target brain core within a photocurable yield-stress support bath. After crosslinking the contour layer, the as-printed model can be harvested from the bath to photo crosslink the brain core, which can be eventually released by liquefying the contour layer. Both the brain patch and full-scale human brain model are successfully printed to mimic the scenario of wound healing after removing a brain tumor, validating the effectiveness of the proposed 3D printing approaches.