反向圆分裂环谐振腔加载多波束全金属超材料后向波振荡器的设计

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS IEEE Transactions on Plasma Science Pub Date : 2023-08-30 DOI:10.1109/TPS.2023.3305563
Aditya Singh Thakur;Meenakshi Rawat;M. V. Kartikeyan
{"title":"反向圆分裂环谐振腔加载多波束全金属超材料后向波振荡器的设计","authors":"Aditya Singh Thakur;Meenakshi Rawat;M. V. Kartikeyan","doi":"10.1109/TPS.2023.3305563","DOIUrl":null,"url":null,"abstract":"In this article, we proposed a novel metamaterial (MTM) inspired interaction structure for high-power microwave backward-wave oscillator (BWO). The proposed structure is an all-metallic MTM slow wave structure (MSWS) which comprises of a number of broadside-coupled split ring resonator (BC-SRR) pairs, arranged periodically in the axial direction and repeated azimuthally. Each pair of oppositely oriented split ring resonator (SRR) provides negative $\\mu$ and the cylindrical waveguide generates negative $\\varepsilon$ medium for below cutoff TE-modes propagation. The full wave cold simulation analysis of the proposed structure, using computer simulation technique (CST)-microwave studio, has been carried out with the objectives of double-negative medium (DNM) optimization, dispersion, and interaction characterization, and S-parameter validation. For the particle-in-cell (PIC) simulation analysis, the CST-particle studio (CST-PS) has been used. In this work, we report an operation of the proposed MTM-loaded BWO (MTM-BWO) employing a beam potential and total beam current of 340 kV and 1.2 kA, respectively, generating an output power of 175 MW within 22–24 ns with an efficiency of 43% using the four-beam MSWS. As compared to its three-beam counterpart, the four-beam structure generates higher power with better efficiency.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"51 9","pages":"2625-2631"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an Oppositely-Oriented Circular Split-Ring Resonator-Loaded Multibeam All-Metallic Metamaterial Backward-Wave Oscillator\",\"authors\":\"Aditya Singh Thakur;Meenakshi Rawat;M. V. Kartikeyan\",\"doi\":\"10.1109/TPS.2023.3305563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we proposed a novel metamaterial (MTM) inspired interaction structure for high-power microwave backward-wave oscillator (BWO). The proposed structure is an all-metallic MTM slow wave structure (MSWS) which comprises of a number of broadside-coupled split ring resonator (BC-SRR) pairs, arranged periodically in the axial direction and repeated azimuthally. Each pair of oppositely oriented split ring resonator (SRR) provides negative $\\\\mu$ and the cylindrical waveguide generates negative $\\\\varepsilon$ medium for below cutoff TE-modes propagation. The full wave cold simulation analysis of the proposed structure, using computer simulation technique (CST)-microwave studio, has been carried out with the objectives of double-negative medium (DNM) optimization, dispersion, and interaction characterization, and S-parameter validation. For the particle-in-cell (PIC) simulation analysis, the CST-particle studio (CST-PS) has been used. In this work, we report an operation of the proposed MTM-loaded BWO (MTM-BWO) employing a beam potential and total beam current of 340 kV and 1.2 kA, respectively, generating an output power of 175 MW within 22–24 ns with an efficiency of 43% using the four-beam MSWS. As compared to its three-beam counterpart, the four-beam structure generates higher power with better efficiency.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"51 9\",\"pages\":\"2625-2631\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10235299/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10235299/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的超材料(MTM)启发的高功率微波后向波振荡器(BWO)相互作用结构。所提出的结构是全金属MTM慢波结构(MSWS),其包括多个宽侧耦合开口环谐振器(BC-SRR)对,在轴向方向上周期性地布置并在方位角上重复。每对定向相反的开口环谐振器(SRR)提供负$\mu$,并且圆柱形波导产生用于低于截止TE模式传播的负$\varepsilon$介质。利用计算机模拟技术(CST)-微波工作室对所提出的结构进行了全波冷模拟分析,目的是对双负介质(DNM)进行优化、色散和相互作用表征以及S参数验证。对于细胞内粒子(PIC)模拟分析,使用了CST粒子工作室(CST-PS)。在这项工作中,我们报告了所提出的MTM负载BWO(MTM-BWO)的操作,其使用的束电位和总束电流分别为340 kV和1.2 kA,使用四束MSWS在22-24 ns内产生175 MW的输出功率,效率为43%。与三梁结构相比,四梁结构产生更高的功率和更好的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of an Oppositely-Oriented Circular Split-Ring Resonator-Loaded Multibeam All-Metallic Metamaterial Backward-Wave Oscillator
In this article, we proposed a novel metamaterial (MTM) inspired interaction structure for high-power microwave backward-wave oscillator (BWO). The proposed structure is an all-metallic MTM slow wave structure (MSWS) which comprises of a number of broadside-coupled split ring resonator (BC-SRR) pairs, arranged periodically in the axial direction and repeated azimuthally. Each pair of oppositely oriented split ring resonator (SRR) provides negative $\mu$ and the cylindrical waveguide generates negative $\varepsilon$ medium for below cutoff TE-modes propagation. The full wave cold simulation analysis of the proposed structure, using computer simulation technique (CST)-microwave studio, has been carried out with the objectives of double-negative medium (DNM) optimization, dispersion, and interaction characterization, and S-parameter validation. For the particle-in-cell (PIC) simulation analysis, the CST-particle studio (CST-PS) has been used. In this work, we report an operation of the proposed MTM-loaded BWO (MTM-BWO) employing a beam potential and total beam current of 340 kV and 1.2 kA, respectively, generating an output power of 175 MW within 22–24 ns with an efficiency of 43% using the four-beam MSWS. As compared to its three-beam counterpart, the four-beam structure generates higher power with better efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
期刊最新文献
IEEE Transactions on Plasma Science Publication Information Table of Contents IEEE Transactions on Plasma Science Information for Authors Blank Page IEEE Transactions on Plasma Science Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1