用于具有优异倍率性能和功率密度的超级电容器的活性炭的孔结构调节和杂原子掺杂

Jian Zhang, Huachao Yang, Zhesong Huang, HuiHui Zhang, Xinchao Lu, Jianhua Yan, Kefa Cen, Zheng Bo
{"title":"用于具有优异倍率性能和功率密度的超级电容器的活性炭的孔结构调节和杂原子掺杂","authors":"Jian Zhang,&nbsp;Huachao Yang,&nbsp;Zhesong Huang,&nbsp;HuiHui Zhang,&nbsp;Xinchao Lu,&nbsp;Jianhua Yan,&nbsp;Kefa Cen,&nbsp;Zheng Bo","doi":"10.1007/s42768-023-00155-1","DOIUrl":null,"url":null,"abstract":"<div><p>Activated carbon (AC) has attracted tremendous research interest as an electrode material for supercapacitors owing to its high specific surface area, high porosity, and low cost. However, AC-based supercapacitors suffer from limited rate performance and low power density, which mainly arise from their inherently low electrical conductivity and sluggish ion dynamics in the micropores. Here, we propose a simple yet effective strategy to address the aforementioned issue by nitrogen/fluorine doping and enlarging the micropore size. During the treatment, the decomposition products of NH<sub>4</sub>F react with the carbon atoms to dope the AC with nitrogen/fluorine and simultaneously enlarge the pores by etching. The treated AC shows a higher specific surface area of 1826 m<sup>2</sup> g<sup>−1</sup> (by ~ 15%), more micropores with a diameter around 0.93 nm (by ~ 33%), better wettability (contact angle decreased from 120° to 45°), and excellent electrical conductivity (96 S m<sup>−1</sup>) compared with untreated AC (39 S m<sup>−1</sup>). The as-fabricated supercapacitors demonstrate excellent specific capacitance (26 F g<sup>−1</sup> at 1 A g<sup>−1</sup>), significantly reduced electrical resistance (by ~ 50%), and improved rate performance (from 46.21 to 64.39% at current densities of 1 to 20 A g<sup>−1</sup>). Moreover, the treated AC-based supercapacitor achieves a maximum energy density of 25 Wh kg<sup>−1</sup> at 1000 W kg<sup>−1</sup> and a maximum power density of 10,875 W kg<sup>−1</sup> at 15 Wh kg<sup>−1</sup>, which clearly outperforms pristine AC-based supercapacitors. This synergistic treatment strategy provides an effective way to improve the rate performance and power density of AC-based supercapacitors.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"5 3","pages":"417 - 426"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pore-structure regulation and heteroatom doping of activated carbon for supercapacitors with excellent rate performance and power density\",\"authors\":\"Jian Zhang,&nbsp;Huachao Yang,&nbsp;Zhesong Huang,&nbsp;HuiHui Zhang,&nbsp;Xinchao Lu,&nbsp;Jianhua Yan,&nbsp;Kefa Cen,&nbsp;Zheng Bo\",\"doi\":\"10.1007/s42768-023-00155-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Activated carbon (AC) has attracted tremendous research interest as an electrode material for supercapacitors owing to its high specific surface area, high porosity, and low cost. However, AC-based supercapacitors suffer from limited rate performance and low power density, which mainly arise from their inherently low electrical conductivity and sluggish ion dynamics in the micropores. Here, we propose a simple yet effective strategy to address the aforementioned issue by nitrogen/fluorine doping and enlarging the micropore size. During the treatment, the decomposition products of NH<sub>4</sub>F react with the carbon atoms to dope the AC with nitrogen/fluorine and simultaneously enlarge the pores by etching. The treated AC shows a higher specific surface area of 1826 m<sup>2</sup> g<sup>−1</sup> (by ~ 15%), more micropores with a diameter around 0.93 nm (by ~ 33%), better wettability (contact angle decreased from 120° to 45°), and excellent electrical conductivity (96 S m<sup>−1</sup>) compared with untreated AC (39 S m<sup>−1</sup>). The as-fabricated supercapacitors demonstrate excellent specific capacitance (26 F g<sup>−1</sup> at 1 A g<sup>−1</sup>), significantly reduced electrical resistance (by ~ 50%), and improved rate performance (from 46.21 to 64.39% at current densities of 1 to 20 A g<sup>−1</sup>). Moreover, the treated AC-based supercapacitor achieves a maximum energy density of 25 Wh kg<sup>−1</sup> at 1000 W kg<sup>−1</sup> and a maximum power density of 10,875 W kg<sup>−1</sup> at 15 Wh kg<sup>−1</sup>, which clearly outperforms pristine AC-based supercapacitors. This synergistic treatment strategy provides an effective way to improve the rate performance and power density of AC-based supercapacitors.</p></div>\",\"PeriodicalId\":807,\"journal\":{\"name\":\"Waste Disposal & Sustainable Energy\",\"volume\":\"5 3\",\"pages\":\"417 - 426\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Disposal & Sustainable Energy\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42768-023-00155-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-023-00155-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

活性炭(AC)作为超级电容器的电极材料,由于其高比表面积、高孔隙率和低成本而引起了极大的研究兴趣。然而,基于AC的超级电容器存在速率性能有限和功率密度低的问题,这主要是由于其固有的低电导率和微孔中缓慢的离子动力学。在这里,我们提出了一种简单而有效的策略,通过氮/氟掺杂和扩大微孔尺寸来解决上述问题。在处理过程中,NH4F的分解产物与碳原子反应,用氮/氟掺杂AC,同时通过蚀刻扩大孔隙。经处理的AC显示出1826 m2 g−1的较高比表面积( ~ 15%)、直径约0.93nm的更多微孔(通过 ~ 33%)、更好的润湿性(接触角从120°降低到45°)和优异的导电性(96 S m−1)。所制造的超级电容器表现出优异的比电容(1 A g−1时为26 F g−1),电阻显著降低( ~ 50%),并提高了倍率性能(在1至20 A g−1的电流密度下从46.21%提高到64.39%)。此外,经过处理的AC基超级电容器在1000 W kg−1时实现了25 Wh kg−1的最大能量密度,在15 Wh kg−2时实现了10875 W kg−2的最大功率密度,这明显优于原始的AC基超电容器。这种协同处理策略为提高交流超级电容器的倍率性能和功率密度提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pore-structure regulation and heteroatom doping of activated carbon for supercapacitors with excellent rate performance and power density

Activated carbon (AC) has attracted tremendous research interest as an electrode material for supercapacitors owing to its high specific surface area, high porosity, and low cost. However, AC-based supercapacitors suffer from limited rate performance and low power density, which mainly arise from their inherently low electrical conductivity and sluggish ion dynamics in the micropores. Here, we propose a simple yet effective strategy to address the aforementioned issue by nitrogen/fluorine doping and enlarging the micropore size. During the treatment, the decomposition products of NH4F react with the carbon atoms to dope the AC with nitrogen/fluorine and simultaneously enlarge the pores by etching. The treated AC shows a higher specific surface area of 1826 m2 g−1 (by ~ 15%), more micropores with a diameter around 0.93 nm (by ~ 33%), better wettability (contact angle decreased from 120° to 45°), and excellent electrical conductivity (96 S m−1) compared with untreated AC (39 S m−1). The as-fabricated supercapacitors demonstrate excellent specific capacitance (26 F g−1 at 1 A g−1), significantly reduced electrical resistance (by ~ 50%), and improved rate performance (from 46.21 to 64.39% at current densities of 1 to 20 A g−1). Moreover, the treated AC-based supercapacitor achieves a maximum energy density of 25 Wh kg−1 at 1000 W kg−1 and a maximum power density of 10,875 W kg−1 at 15 Wh kg−1, which clearly outperforms pristine AC-based supercapacitors. This synergistic treatment strategy provides an effective way to improve the rate performance and power density of AC-based supercapacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antifouling ultrafiltration membranes based on acrylic fibers waste/nanochitosan for Congo red and crystal violet removal Enhancing methane production in anaerobic co-digestion of food wastes and sewage sludge: roles of different types of iron amendments A two-stage strategy combining vermicomposting and membrane-covered aerobic composting to achieve value-added recycling of kitchen waste solid residues Slum dynamics: the interplay of remittances, waste disposal and health outcomes A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1