Huiqin Li, Lihua Wu, Hui Lei, Cui Deng, Fan Huang, Lijun Ren, Hongge Zhang, Weiwei Zhao, Qian Zhao
{"title":"基于Au的电化学传感particle@SiO2@CQDs纳米复合材料","authors":"Huiqin Li, Lihua Wu, Hui Lei, Cui Deng, Fan Huang, Lijun Ren, Hongge Zhang, Weiwei Zhao, Qian Zhao","doi":"10.1007/s13404-023-00329-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, carbon quantum dots (CQDs) were first synthesized using a hydrothermal method, and then, Au@SiO<sub>2</sub> core-shell nanomaterials were synthesized using layer-by-layer assembly. CQDs were adsorbed on the surface of Au@SiO<sub>2</sub> nanoparticles through self-assembly to form Au@SiO<sub>2</sub>/CQDs nanocomposite materials. Transmission electron microscopy and X-ray diffraction were used to characterize the size, shape, element composition, and structure of nanocomposites; ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy were used to analyze the optical properties of nanocomposites. The results show that Au@SiO<sub>2</sub>/CQD nanomaterials have a core-shell structure with good morphology and exhibit excellent luminescence characteristics. The electrochemical performance of nanocomposites was characterized using electrochemical means, and a hydrogen peroxide sensor was constructed for the sensitive detection of hydrogen peroxide, thus realizing the rapid and sensitive detection of hydrogen peroxide at levels as low as 0.2 mM. The electrode GCE modified with Au@SiO<sub>2</sub>/CQDs exhibits good selectivity and stability in the detection of hydrogen peroxide.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":"56 3","pages":"145 - 155"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical sensing based on Au particle@SiO2@CQDs nanocomposites\",\"authors\":\"Huiqin Li, Lihua Wu, Hui Lei, Cui Deng, Fan Huang, Lijun Ren, Hongge Zhang, Weiwei Zhao, Qian Zhao\",\"doi\":\"10.1007/s13404-023-00329-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, carbon quantum dots (CQDs) were first synthesized using a hydrothermal method, and then, Au@SiO<sub>2</sub> core-shell nanomaterials were synthesized using layer-by-layer assembly. CQDs were adsorbed on the surface of Au@SiO<sub>2</sub> nanoparticles through self-assembly to form Au@SiO<sub>2</sub>/CQDs nanocomposite materials. Transmission electron microscopy and X-ray diffraction were used to characterize the size, shape, element composition, and structure of nanocomposites; ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy were used to analyze the optical properties of nanocomposites. The results show that Au@SiO<sub>2</sub>/CQD nanomaterials have a core-shell structure with good morphology and exhibit excellent luminescence characteristics. The electrochemical performance of nanocomposites was characterized using electrochemical means, and a hydrogen peroxide sensor was constructed for the sensitive detection of hydrogen peroxide, thus realizing the rapid and sensitive detection of hydrogen peroxide at levels as low as 0.2 mM. The electrode GCE modified with Au@SiO<sub>2</sub>/CQDs exhibits good selectivity and stability in the detection of hydrogen peroxide.</p></div>\",\"PeriodicalId\":55086,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":\"56 3\",\"pages\":\"145 - 155\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-023-00329-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-023-00329-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Electrochemical sensing based on Au particle@SiO2@CQDs nanocomposites
In this study, carbon quantum dots (CQDs) were first synthesized using a hydrothermal method, and then, Au@SiO2 core-shell nanomaterials were synthesized using layer-by-layer assembly. CQDs were adsorbed on the surface of Au@SiO2 nanoparticles through self-assembly to form Au@SiO2/CQDs nanocomposite materials. Transmission electron microscopy and X-ray diffraction were used to characterize the size, shape, element composition, and structure of nanocomposites; ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy were used to analyze the optical properties of nanocomposites. The results show that Au@SiO2/CQD nanomaterials have a core-shell structure with good morphology and exhibit excellent luminescence characteristics. The electrochemical performance of nanocomposites was characterized using electrochemical means, and a hydrogen peroxide sensor was constructed for the sensitive detection of hydrogen peroxide, thus realizing the rapid and sensitive detection of hydrogen peroxide at levels as low as 0.2 mM. The electrode GCE modified with Au@SiO2/CQDs exhibits good selectivity and stability in the detection of hydrogen peroxide.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.