加速缓解类似流行病的药物的数据驱动计算设计和实验验证。

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2023-10-18 DOI:10.1021/acs.jpclett.3c01749
Samrendra K. Singh, Kelsie King, Cole Gannett, Christina Chuong, Soumil Y. Joshi, Charles Plate, Parisa Farzeen, Emily M. Webb, Lakshmi Kumar Kunche, James Weger-Lucarelli, Andrew N. Lowell, Anne M. Brown* and Sanket A. Deshmukh*, 
{"title":"加速缓解类似流行病的药物的数据驱动计算设计和实验验证。","authors":"Samrendra K. Singh,&nbsp;Kelsie King,&nbsp;Cole Gannett,&nbsp;Christina Chuong,&nbsp;Soumil Y. Joshi,&nbsp;Charles Plate,&nbsp;Parisa Farzeen,&nbsp;Emily M. Webb,&nbsp;Lakshmi Kumar Kunche,&nbsp;James Weger-Lucarelli,&nbsp;Andrew N. Lowell,&nbsp;Anne M. Brown* and Sanket A. Deshmukh*,&nbsp;","doi":"10.1021/acs.jpclett.3c01749","DOIUrl":null,"url":null,"abstract":"<p >Emerging pathogens are a historic threat to public health and economic stability. Current trial-and-error approaches to identify new therapeutics are often ineffective due to their inefficient exploration of the enormous small molecule design space. Here, we present a data-driven computational framework composed of hybrid evolutionary algorithms for evolving functional groups on existing drugs to improve their binding affinity toward the main protease (M<sup>pro</sup>) of SARS-CoV-2. We show that combinations of functional groups and sites are critical to design drugs with improved binding affinity, which can be easily achieved using our framework by exploring a fraction of the available search space. Atomistic simulations and experimental validation elucidate that enhanced and prolonged interactions between functionalized drugs and M<sup>pro</sup> residues result in their improved therapeutic value over that of the parental compound. Overall, this novel framework is extremely flexible and has the potential to rapidly design inhibitors for any protein with available crystal structures.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 42","pages":"9490–9499"},"PeriodicalIF":4.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Driven Computational Design and Experimental Validation of Drugs for Accelerated Mitigation of Pandemic-like Scenarios\",\"authors\":\"Samrendra K. Singh,&nbsp;Kelsie King,&nbsp;Cole Gannett,&nbsp;Christina Chuong,&nbsp;Soumil Y. Joshi,&nbsp;Charles Plate,&nbsp;Parisa Farzeen,&nbsp;Emily M. Webb,&nbsp;Lakshmi Kumar Kunche,&nbsp;James Weger-Lucarelli,&nbsp;Andrew N. Lowell,&nbsp;Anne M. Brown* and Sanket A. Deshmukh*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.3c01749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Emerging pathogens are a historic threat to public health and economic stability. Current trial-and-error approaches to identify new therapeutics are often ineffective due to their inefficient exploration of the enormous small molecule design space. Here, we present a data-driven computational framework composed of hybrid evolutionary algorithms for evolving functional groups on existing drugs to improve their binding affinity toward the main protease (M<sup>pro</sup>) of SARS-CoV-2. We show that combinations of functional groups and sites are critical to design drugs with improved binding affinity, which can be easily achieved using our framework by exploring a fraction of the available search space. Atomistic simulations and experimental validation elucidate that enhanced and prolonged interactions between functionalized drugs and M<sup>pro</sup> residues result in their improved therapeutic value over that of the parental compound. Overall, this novel framework is extremely flexible and has the potential to rapidly design inhibitors for any protein with available crystal structures.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"14 42\",\"pages\":\"9490–9499\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01749\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01749","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

新出现的病原体是对公共卫生和经济稳定的历史性威胁。目前识别新疗法的试错方法往往是无效的,因为它们对巨大的小分子设计空间的探索效率低下。在这里,我们提出了一个由混合进化算法组成的数据驱动的计算框架,用于进化现有药物上的官能团,以提高其对严重急性呼吸系统综合征冠状病毒2型主要蛋白酶(Mpro)的结合亲和力。我们表明,官能团和位点的组合对于设计具有提高结合亲和力的药物至关重要,使用我们的框架,通过探索一小部分可用搜索空间,可以很容易地实现这一点。原子模拟和实验验证表明,功能化药物和Mpro残基之间增强和延长的相互作用使其治疗价值比母体化合物有所提高。总的来说,这种新的框架非常灵活,有可能快速设计出任何具有可用晶体结构的蛋白质的抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Driven Computational Design and Experimental Validation of Drugs for Accelerated Mitigation of Pandemic-like Scenarios

Emerging pathogens are a historic threat to public health and economic stability. Current trial-and-error approaches to identify new therapeutics are often ineffective due to their inefficient exploration of the enormous small molecule design space. Here, we present a data-driven computational framework composed of hybrid evolutionary algorithms for evolving functional groups on existing drugs to improve their binding affinity toward the main protease (Mpro) of SARS-CoV-2. We show that combinations of functional groups and sites are critical to design drugs with improved binding affinity, which can be easily achieved using our framework by exploring a fraction of the available search space. Atomistic simulations and experimental validation elucidate that enhanced and prolonged interactions between functionalized drugs and Mpro residues result in their improved therapeutic value over that of the parental compound. Overall, this novel framework is extremely flexible and has the potential to rapidly design inhibitors for any protein with available crystal structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Different Photodissociation Mechanisms in Fe(CO)5 and Cr(CO)6 Evidenced with Femtosecond Valence Photoelectron Spectroscopy and Excited-State Molecular Dynamics Simulations Protonation Weakens the Influence of Ribose on Triplet Decay of 2-Thiocytidine Ion Diffusion Reveals Heterogeneous Viscosity in Nanostructured Ionic Liquids Controlling the Selectivity of Reaction Products by Transmetalation on a Ag(111) Substrate Upconversion on the Micrometer Scale: Impact of Local Heterogeneity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1