帕金森病中多巴胺的消耗及相关的治疗选择:文献综述。

IF 3.1 Q2 NEUROSCIENCES AIMS Neuroscience Pub Date : 2023-08-14 eCollection Date: 2023-01-01 DOI:10.3934/Neuroscience.2023017
Sairam Ramesh, Arosh S Perera Molligoda Arachchige
{"title":"帕金森病中多巴胺的消耗及相关的治疗选择:文献综述。","authors":"Sairam Ramesh,&nbsp;Arosh S Perera Molligoda Arachchige","doi":"10.3934/Neuroscience.2023017","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects motor and cognition functions. The etiology of Parkinson's disease remains largely unknown, but genetic and environmental factors are believed to play a role. The neurotransmitter dopamine is implicated in regulating movement, motivation, memory, and other physiological processes. In individuals with Parkinson's disease, the loss of dopaminergic neurons leads to a reduction in dopamine levels, which causes motor impairment and may also contribute to the cognitive deficits observed in some patients. Therefore, it is important to understand the pathophysiology that leads to the loss of dopaminergic neurons, along with reliable biomarkers that may help distinguish PD from other conditions, monitor its progression, or indicate a positive response to a therapeutic intervention. Important advances in the treatment, etiology, and pathogenesis of Parkinson's disease have been made in the past 50 years. Therefore, this review tries to explain the different possible mechanisms behind the depletion of dopamine in PD patients such as alpha-synuclein abnormalities, mitochondrial dysfunction, and 3,4-dihydroxyphenylacetaldehyde (DOPAL) toxicity, along with the current therapies we have and the ones that are in development. The clinical aspect of Parkinson's disease such as the manifestation of both motor and non-motor symptoms, and the differential diagnosis with similar neurodegenerative disease are also discussed.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 3","pages":"200-231"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567584/pdf/","citationCount":"0","resultStr":"{\"title\":\"Depletion of dopamine in Parkinson's disease and relevant therapeutic options: A review of the literature.\",\"authors\":\"Sairam Ramesh,&nbsp;Arosh S Perera Molligoda Arachchige\",\"doi\":\"10.3934/Neuroscience.2023017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects motor and cognition functions. The etiology of Parkinson's disease remains largely unknown, but genetic and environmental factors are believed to play a role. The neurotransmitter dopamine is implicated in regulating movement, motivation, memory, and other physiological processes. In individuals with Parkinson's disease, the loss of dopaminergic neurons leads to a reduction in dopamine levels, which causes motor impairment and may also contribute to the cognitive deficits observed in some patients. Therefore, it is important to understand the pathophysiology that leads to the loss of dopaminergic neurons, along with reliable biomarkers that may help distinguish PD from other conditions, monitor its progression, or indicate a positive response to a therapeutic intervention. Important advances in the treatment, etiology, and pathogenesis of Parkinson's disease have been made in the past 50 years. Therefore, this review tries to explain the different possible mechanisms behind the depletion of dopamine in PD patients such as alpha-synuclein abnormalities, mitochondrial dysfunction, and 3,4-dihydroxyphenylacetaldehyde (DOPAL) toxicity, along with the current therapies we have and the ones that are in development. The clinical aspect of Parkinson's disease such as the manifestation of both motor and non-motor symptoms, and the differential diagnosis with similar neurodegenerative disease are also discussed.</p>\",\"PeriodicalId\":7732,\"journal\":{\"name\":\"AIMS Neuroscience\",\"volume\":\"10 3\",\"pages\":\"200-231\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567584/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/Neuroscience.2023017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2023017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种进行性神经退行性疾病,影响运动和认知功能。帕金森病的病因在很大程度上仍然未知,但遗传和环境因素被认为起了一定作用。神经递质多巴胺与调节运动、动机、记忆和其他生理过程有关。在帕金森病患者中,多巴胺能神经元的丧失会导致多巴胺水平下降,这会导致运动障碍,也可能导致一些患者的认知缺陷。因此,重要的是要了解导致多巴胺能神经元丧失的病理生理学,以及可能有助于将帕金森病与其他疾病区分开来、监测其进展或表明对治疗干预的积极反应的可靠生物标志物。在过去的50年里,在帕金森病的治疗、病因和发病机制方面取得了重要进展。因此,这篇综述试图解释帕金森病患者多巴胺耗竭背后的不同可能机制,如α-突触核蛋白异常、线粒体功能障碍和3,4-二羟基苯乙醛(DOPAL)毒性,以及我们目前的治疗方法和正在开发中的治疗方法。还讨论了帕金森病的临床方面,如运动和非运动症状的表现,以及与类似神经退行性疾病的鉴别诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depletion of dopamine in Parkinson's disease and relevant therapeutic options: A review of the literature.

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects motor and cognition functions. The etiology of Parkinson's disease remains largely unknown, but genetic and environmental factors are believed to play a role. The neurotransmitter dopamine is implicated in regulating movement, motivation, memory, and other physiological processes. In individuals with Parkinson's disease, the loss of dopaminergic neurons leads to a reduction in dopamine levels, which causes motor impairment and may also contribute to the cognitive deficits observed in some patients. Therefore, it is important to understand the pathophysiology that leads to the loss of dopaminergic neurons, along with reliable biomarkers that may help distinguish PD from other conditions, monitor its progression, or indicate a positive response to a therapeutic intervention. Important advances in the treatment, etiology, and pathogenesis of Parkinson's disease have been made in the past 50 years. Therefore, this review tries to explain the different possible mechanisms behind the depletion of dopamine in PD patients such as alpha-synuclein abnormalities, mitochondrial dysfunction, and 3,4-dihydroxyphenylacetaldehyde (DOPAL) toxicity, along with the current therapies we have and the ones that are in development. The clinical aspect of Parkinson's disease such as the manifestation of both motor and non-motor symptoms, and the differential diagnosis with similar neurodegenerative disease are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Neuroscience
AIMS Neuroscience NEUROSCIENCES-
CiteScore
4.20
自引率
0.00%
发文量
26
审稿时长
8 weeks
期刊介绍: AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.
期刊最新文献
Vagus nerve stimulation in dementia: A scoping review of clinical and pre-clinical studies. The potential of exosomal biomarkers: Revolutionizing Parkinson's disease: How do they influence pathogenesis, diagnosis, and therapeutic strategies? The effects of right temporoparietal junction stimulation on embodiment, presence, and performance in teleoperation. Cognitive effects of brief and intensive neurofeedback treatment in schizophrenia: a single center pilot study. Novel perspective of therapeutic modules to overcome motor and nonmotor symptoms in Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1