{"title":"突变体Tof11等位基因在早期种植的适应性强的日本夏型大豆中高度积累。","authors":"Kunihiko Komatsu, Takashi Sayama, Ken-Ichiro Yamashita, Yoshitake Takada","doi":"10.1270/jsbbs.22098","DOIUrl":null,"url":null,"abstract":"<p><p>To avoid crop failure because of climate change, soybean (<i>Glycine max</i> (L.) Merrill) cultivars adaptable to early planting are required in western Japan. Because current Japanese cultivars may not be adaptable, genetic resources with high early-planting adaptability, and their genetic information must be developed. In the present study, summer type (ST) soybeans developed for early planting were used as plant materials. We examined their phenological characteristics and short reproductive period as an indicator of early planting adaptability and performed genetic studies. Biparental quantitative trait loci (QTL) analysis of a representative ST cultivar revealed a principal QTL for the reproductive period duration on chromosome 11. The results of resequencing analysis suggested that circadian clock-related <i>Tof11</i> (soybean orthologue of <i>PRR3</i>) is a candidate QTL. Additionally, all 25 early planting-adaptable germplasms evaluated in this study possessed mutant alleles in <i>Tof11</i>, whereas 15 conventional cultivars only had wild-type alleles. These results suggest that mutant alleles in <i>Tof11</i> are important genetic factors in the high adaptability to early planting of these soybeans, and thus, these alleles were acquired and accumulated in the ST soybean population.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"322-331"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570879/pdf/73_322.pdf","citationCount":"0","resultStr":"{\"title\":\"Mutant <i>Tof11</i> alleles are highly accumulated in early planting-adaptable Japanese summer type soybeans.\",\"authors\":\"Kunihiko Komatsu, Takashi Sayama, Ken-Ichiro Yamashita, Yoshitake Takada\",\"doi\":\"10.1270/jsbbs.22098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To avoid crop failure because of climate change, soybean (<i>Glycine max</i> (L.) Merrill) cultivars adaptable to early planting are required in western Japan. Because current Japanese cultivars may not be adaptable, genetic resources with high early-planting adaptability, and their genetic information must be developed. In the present study, summer type (ST) soybeans developed for early planting were used as plant materials. We examined their phenological characteristics and short reproductive period as an indicator of early planting adaptability and performed genetic studies. Biparental quantitative trait loci (QTL) analysis of a representative ST cultivar revealed a principal QTL for the reproductive period duration on chromosome 11. The results of resequencing analysis suggested that circadian clock-related <i>Tof11</i> (soybean orthologue of <i>PRR3</i>) is a candidate QTL. Additionally, all 25 early planting-adaptable germplasms evaluated in this study possessed mutant alleles in <i>Tof11</i>, whereas 15 conventional cultivars only had wild-type alleles. These results suggest that mutant alleles in <i>Tof11</i> are important genetic factors in the high adaptability to early planting of these soybeans, and thus, these alleles were acquired and accumulated in the ST soybean population.</p>\",\"PeriodicalId\":9258,\"journal\":{\"name\":\"Breeding Science\",\"volume\":\"73 3\",\"pages\":\"322-331\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570879/pdf/73_322.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breeding Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1270/jsbbs.22098\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.22098","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Mutant Tof11 alleles are highly accumulated in early planting-adaptable Japanese summer type soybeans.
To avoid crop failure because of climate change, soybean (Glycine max (L.) Merrill) cultivars adaptable to early planting are required in western Japan. Because current Japanese cultivars may not be adaptable, genetic resources with high early-planting adaptability, and their genetic information must be developed. In the present study, summer type (ST) soybeans developed for early planting were used as plant materials. We examined their phenological characteristics and short reproductive period as an indicator of early planting adaptability and performed genetic studies. Biparental quantitative trait loci (QTL) analysis of a representative ST cultivar revealed a principal QTL for the reproductive period duration on chromosome 11. The results of resequencing analysis suggested that circadian clock-related Tof11 (soybean orthologue of PRR3) is a candidate QTL. Additionally, all 25 early planting-adaptable germplasms evaluated in this study possessed mutant alleles in Tof11, whereas 15 conventional cultivars only had wild-type alleles. These results suggest that mutant alleles in Tof11 are important genetic factors in the high adaptability to early planting of these soybeans, and thus, these alleles were acquired and accumulated in the ST soybean population.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.