Shantao Han, Peng Wen, Huaijiao Wang, Yang Zhou, Yu Gu, Lu Zhang, Yang Shao-Horn, Xinrong Lin, Mao Chen
{"title":"对聚合物进行测序,使固态锂电池成为可能。","authors":"Shantao Han, Peng Wen, Huaijiao Wang, Yang Zhou, Yu Gu, Lu Zhang, Yang Shao-Horn, Xinrong Lin, Mao Chen","doi":"10.1038/s41563-023-01693-z","DOIUrl":null,"url":null,"abstract":"Rational designs of solid polymer electrolytes with high ion conduction are critical in enabling the creation of advanced lithium batteries. However, known polymer electrolytes have much lower ionic conductivity than liquid/ceramics at room temperature, which limits their practical use in batteries. Here we show that precise positioning of designed repeating units in alternating polymer sequences lays the foundation for homogenized Li+ distribution, non-aggregated Li+-anion solvation and sequence-assisted site-to-site ion migration, facilitating the tuning of Li+ conductivity by up to three orders of magnitude. The assembled all-solid-state batteries facilitate reversible and dendrite-mitigated cycling against Li metal from ambient to elevated temperatures. This work demonstrates a powerful molecular engineering means to access highly ion-conductive solid-state materials for next-generation energy devices. Solid polymer electrolytes are crucial for the development of lithium batteries, but their lower ionic conductivity compared with liquid/ceramics at room temperature limits their practical use. Precise positioning of designed repeating units in alternating polymer sequences now allows the Li+ conductivity to be tuned by up to three orders of magnitude.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"22 12","pages":"1515-1522"},"PeriodicalIF":37.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequencing polymers to enable solid-state lithium batteries\",\"authors\":\"Shantao Han, Peng Wen, Huaijiao Wang, Yang Zhou, Yu Gu, Lu Zhang, Yang Shao-Horn, Xinrong Lin, Mao Chen\",\"doi\":\"10.1038/s41563-023-01693-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rational designs of solid polymer electrolytes with high ion conduction are critical in enabling the creation of advanced lithium batteries. However, known polymer electrolytes have much lower ionic conductivity than liquid/ceramics at room temperature, which limits their practical use in batteries. Here we show that precise positioning of designed repeating units in alternating polymer sequences lays the foundation for homogenized Li+ distribution, non-aggregated Li+-anion solvation and sequence-assisted site-to-site ion migration, facilitating the tuning of Li+ conductivity by up to three orders of magnitude. The assembled all-solid-state batteries facilitate reversible and dendrite-mitigated cycling against Li metal from ambient to elevated temperatures. This work demonstrates a powerful molecular engineering means to access highly ion-conductive solid-state materials for next-generation energy devices. Solid polymer electrolytes are crucial for the development of lithium batteries, but their lower ionic conductivity compared with liquid/ceramics at room temperature limits their practical use. Precise positioning of designed repeating units in alternating polymer sequences now allows the Li+ conductivity to be tuned by up to three orders of magnitude.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"22 12\",\"pages\":\"1515-1522\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-023-01693-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-023-01693-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Sequencing polymers to enable solid-state lithium batteries
Rational designs of solid polymer electrolytes with high ion conduction are critical in enabling the creation of advanced lithium batteries. However, known polymer electrolytes have much lower ionic conductivity than liquid/ceramics at room temperature, which limits their practical use in batteries. Here we show that precise positioning of designed repeating units in alternating polymer sequences lays the foundation for homogenized Li+ distribution, non-aggregated Li+-anion solvation and sequence-assisted site-to-site ion migration, facilitating the tuning of Li+ conductivity by up to three orders of magnitude. The assembled all-solid-state batteries facilitate reversible and dendrite-mitigated cycling against Li metal from ambient to elevated temperatures. This work demonstrates a powerful molecular engineering means to access highly ion-conductive solid-state materials for next-generation energy devices. Solid polymer electrolytes are crucial for the development of lithium batteries, but their lower ionic conductivity compared with liquid/ceramics at room temperature limits their practical use. Precise positioning of designed repeating units in alternating polymer sequences now allows the Li+ conductivity to be tuned by up to three orders of magnitude.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.