Mehenaz Mithila, M Rabiul Islam, Mst Rima Khatun, M Shamim Gazi, Sheikh Julfikar Hossain
{"title":"无瓣海桑果实提取物改善小鼠铁过载和铁诱导的氧化应激。","authors":"Mehenaz Mithila, M Rabiul Islam, Mst Rima Khatun, M Shamim Gazi, Sheikh Julfikar Hossain","doi":"10.3746/pnf.2023.28.3.278","DOIUrl":null,"url":null,"abstract":"<p><p>Iron overload results in oxidative damage to various biomolecules including DNA, proteins and lipids which ultimately leads to cell death. The <i>Sonneratia apetala</i> fruit contains a high content of antioxidants and displays several bioactive properties. Therefore, the powder of the <i>S. apetala</i> fruit was successively fractionated into <i>n</i>-hexane (Hex), chloroform (Chl), and methanol (Met) fractions to evaluate their efficiency in ameliorating iron overload. <i>In vitro</i>, a colorimetric method was used to assess the Fe-chelating activity of the fractions using ferrozine. The fractions were also used <i>in vivo</i> to examine their efficacy in ameliorating iron overload and iron-induced oxidative stress in mice induced by intraperitoneal injection of ferric carboxymaltose at 100 mg/kg body weight (bw). Among the fractions, Met showed the highest Fe-chelation ability with an inhibitory concentration 50 of 165 μg/mL followed by Hex (270 μg/mL), and Chl (418 μg/mL). <i>In vivo</i>, the results showed a significantly (<i>P</i><0.05) lower iron profile (iron and ferritin concentrations in serum and liver tissue and total iron-binding capacity of serum) in the Met and the Hex treated mice groups than in the iron-overloaded group. Met at 1,000 μg/kg bw completely ameliorated iron overload in the blood and the liver tissue of mice. At this concentration, Met also prevented iron-induced oxidative stress in the liver tissue of iron-overloaded mice by restoring reducing power, total antioxidant capacity, and total protein. Thus, the <i>S. apetala</i> fruit, especially its Met fraction can be used in treating iron overload and associated toxicity.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"28 3","pages":"278-284"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9d/fa/pnfs-28-3-278.PMC10567606.pdf","citationCount":"0","resultStr":"{\"title\":\"<i>Sonneratia apetala</i> (Buch.-Ham.) Fruit Extracts Ameliorate Iron Overload and Iron-Induced Oxidative Stress in Mice.\",\"authors\":\"Mehenaz Mithila, M Rabiul Islam, Mst Rima Khatun, M Shamim Gazi, Sheikh Julfikar Hossain\",\"doi\":\"10.3746/pnf.2023.28.3.278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron overload results in oxidative damage to various biomolecules including DNA, proteins and lipids which ultimately leads to cell death. The <i>Sonneratia apetala</i> fruit contains a high content of antioxidants and displays several bioactive properties. Therefore, the powder of the <i>S. apetala</i> fruit was successively fractionated into <i>n</i>-hexane (Hex), chloroform (Chl), and methanol (Met) fractions to evaluate their efficiency in ameliorating iron overload. <i>In vitro</i>, a colorimetric method was used to assess the Fe-chelating activity of the fractions using ferrozine. The fractions were also used <i>in vivo</i> to examine their efficacy in ameliorating iron overload and iron-induced oxidative stress in mice induced by intraperitoneal injection of ferric carboxymaltose at 100 mg/kg body weight (bw). Among the fractions, Met showed the highest Fe-chelation ability with an inhibitory concentration 50 of 165 μg/mL followed by Hex (270 μg/mL), and Chl (418 μg/mL). <i>In vivo</i>, the results showed a significantly (<i>P</i><0.05) lower iron profile (iron and ferritin concentrations in serum and liver tissue and total iron-binding capacity of serum) in the Met and the Hex treated mice groups than in the iron-overloaded group. Met at 1,000 μg/kg bw completely ameliorated iron overload in the blood and the liver tissue of mice. At this concentration, Met also prevented iron-induced oxidative stress in the liver tissue of iron-overloaded mice by restoring reducing power, total antioxidant capacity, and total protein. Thus, the <i>S. apetala</i> fruit, especially its Met fraction can be used in treating iron overload and associated toxicity.</p>\",\"PeriodicalId\":20424,\"journal\":{\"name\":\"Preventive Nutrition and Food Science\",\"volume\":\"28 3\",\"pages\":\"278-284\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9d/fa/pnfs-28-3-278.PMC10567606.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preventive Nutrition and Food Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3746/pnf.2023.28.3.278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive Nutrition and Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3746/pnf.2023.28.3.278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Sonneratia apetala (Buch.-Ham.) Fruit Extracts Ameliorate Iron Overload and Iron-Induced Oxidative Stress in Mice.
Iron overload results in oxidative damage to various biomolecules including DNA, proteins and lipids which ultimately leads to cell death. The Sonneratia apetala fruit contains a high content of antioxidants and displays several bioactive properties. Therefore, the powder of the S. apetala fruit was successively fractionated into n-hexane (Hex), chloroform (Chl), and methanol (Met) fractions to evaluate their efficiency in ameliorating iron overload. In vitro, a colorimetric method was used to assess the Fe-chelating activity of the fractions using ferrozine. The fractions were also used in vivo to examine their efficacy in ameliorating iron overload and iron-induced oxidative stress in mice induced by intraperitoneal injection of ferric carboxymaltose at 100 mg/kg body weight (bw). Among the fractions, Met showed the highest Fe-chelation ability with an inhibitory concentration 50 of 165 μg/mL followed by Hex (270 μg/mL), and Chl (418 μg/mL). In vivo, the results showed a significantly (P<0.05) lower iron profile (iron and ferritin concentrations in serum and liver tissue and total iron-binding capacity of serum) in the Met and the Hex treated mice groups than in the iron-overloaded group. Met at 1,000 μg/kg bw completely ameliorated iron overload in the blood and the liver tissue of mice. At this concentration, Met also prevented iron-induced oxidative stress in the liver tissue of iron-overloaded mice by restoring reducing power, total antioxidant capacity, and total protein. Thus, the S. apetala fruit, especially its Met fraction can be used in treating iron overload and associated toxicity.