Dipanjan Saha, Dacen Waters, Ching-Chen Yeh, Swapnil M Mhatre, Ngoc Thanh Mai Tran, Heather M Hill, Kenji Watanabe, Takashi Taniguchi, David B Newell, Matthew Yankowitz, Albert F Rigosi
{"title":"基于石墨烯的单狭缝电子衍射模拟。","authors":"Dipanjan Saha, Dacen Waters, Ching-Chen Yeh, Swapnil M Mhatre, Ngoc Thanh Mai Tran, Heather M Hill, Kenji Watanabe, Takashi Taniguchi, David B Newell, Matthew Yankowitz, Albert F Rigosi","doi":"10.1103/physrevb.108.125420","DOIUrl":null,"url":null,"abstract":"<p><p>This work reports the experimental demonstration of single-slit diffraction exhibited by electrons propagating in encapsulated graphene with an effective de Broglie wavelength corresponding to their attributes as massless Dirac fermions. Nanometer-scale device designs were implemented to fabricate a single-slit followed by five detector paths. Predictive calculations were also utilized to readily understand the observations reported. These calculations required the modeling of wave propagation in ideal case scenarios of the reported device designs to more accurately describe the observed single-slit phenomenon. This experiment was performed at room temperature and 190 K, where data from the latter highlighted the exaggerated asymmetry between electrons and holes, recently ascribed to slightly different Fermi velocities near the K point. This observation and device concept may be used for building diffraction switches with versatile applicability.</p>","PeriodicalId":48701,"journal":{"name":"Physical Review B","volume":"108 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572097/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graphene-Based Analog of Single-Slit Electron Diffraction.\",\"authors\":\"Dipanjan Saha, Dacen Waters, Ching-Chen Yeh, Swapnil M Mhatre, Ngoc Thanh Mai Tran, Heather M Hill, Kenji Watanabe, Takashi Taniguchi, David B Newell, Matthew Yankowitz, Albert F Rigosi\",\"doi\":\"10.1103/physrevb.108.125420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work reports the experimental demonstration of single-slit diffraction exhibited by electrons propagating in encapsulated graphene with an effective de Broglie wavelength corresponding to their attributes as massless Dirac fermions. Nanometer-scale device designs were implemented to fabricate a single-slit followed by five detector paths. Predictive calculations were also utilized to readily understand the observations reported. These calculations required the modeling of wave propagation in ideal case scenarios of the reported device designs to more accurately describe the observed single-slit phenomenon. This experiment was performed at room temperature and 190 K, where data from the latter highlighted the exaggerated asymmetry between electrons and holes, recently ascribed to slightly different Fermi velocities near the K point. This observation and device concept may be used for building diffraction switches with versatile applicability.</p>\",\"PeriodicalId\":48701,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"108 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.108.125420\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.108.125420","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Graphene-Based Analog of Single-Slit Electron Diffraction.
This work reports the experimental demonstration of single-slit diffraction exhibited by electrons propagating in encapsulated graphene with an effective de Broglie wavelength corresponding to their attributes as massless Dirac fermions. Nanometer-scale device designs were implemented to fabricate a single-slit followed by five detector paths. Predictive calculations were also utilized to readily understand the observations reported. These calculations required the modeling of wave propagation in ideal case scenarios of the reported device designs to more accurately describe the observed single-slit phenomenon. This experiment was performed at room temperature and 190 K, where data from the latter highlighted the exaggerated asymmetry between electrons and holes, recently ascribed to slightly different Fermi velocities near the K point. This observation and device concept may be used for building diffraction switches with versatile applicability.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter