乙型肝炎病毒核心蛋白稳定RANGAP1以上调KDM2A并促进肝癌发生。

IF 4.9 2区 医学 Q2 CELL BIOLOGY Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-10-17 DOI:10.1007/s13402-023-00889-4
Hong-Juan You, Li-Hong Ma, Xing Wang, Yu-Xin Wang, Huan-Yang Zhang, En-Si Bao, Yu-Jie Zhong, Xiang-Ye Liu, De-Long Kong, Kui-Yang Zheng, Fan-Yun Kong, Ren-Xian Tang
{"title":"乙型肝炎病毒核心蛋白稳定RANGAP1以上调KDM2A并促进肝癌发生。","authors":"Hong-Juan You, Li-Hong Ma, Xing Wang, Yu-Xin Wang, Huan-Yang Zhang, En-Si Bao, Yu-Jie Zhong, Xiang-Ye Liu, De-Long Kong, Kui-Yang Zheng, Fan-Yun Kong, Ren-Xian Tang","doi":"10.1007/s13402-023-00889-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>As a vital component of the hepatitis B virus (HBV) nucleocapsid, HBV core protein (HBC) contributes to hepatocarcinogenesis. Here, we aimed to assess the effects of RANGAP1 and KDM2A on tumorigenesis induced by HBC.</p><p><strong>Methods: </strong>Co-immunoprecipitation (Co-IP) combined with mass spectrometry were utilized to identify the proteins with the capacity to interact with HBC. The gene and protein levels of RANGAP1 and KDM2A in hepatocellular carcinoma (HCC) and HBV-positive HCC tissues were evaluated using different cohorts. The roles of RANGAP1 and KDM2A in HCC cells mediated by HBC were investigated in vitro and in vivo. Co-IP and western blot were used to estimate the interaction of HBC with RANGAP1 and KDM2A and assess RANGAP1 stabilization regulated by HBC.</p><p><strong>Results: </strong>We discovered that HBC could interact with RANGAP1 and KDM2A, the levels of which were markedly elevated in HCC tissues. Relying on RANGAP1 and KDM2A, HBC facilitated HCC cell growth and migration. The increased stabilization of RANGAP1 mediated by HBC was relevant to the disruption of the interaction between RANGAP1 and an E3 ligase SYVN1. RANGAP1 interacted with KDM2A, and it further promoted KDM2A stabilization by disturbing the interaction between KDM2A and SYVN1. HBC enhanced the interaction of KDM2A with RANGAP1 and upregulated the expression of KDM2A via RANGAP1 in HCC cells.</p><p><strong>Conclusions: </strong>These findings demonstrate a novel mechanism by which HBC facilitates hepatocarcinogenesis. RANGAP1 and KDM2A could act as potential molecular targets for treating HBV-associated malignancy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hepatitis B virus core protein stabilizes RANGAP1 to upregulate KDM2A and facilitate hepatocarcinogenesis.\",\"authors\":\"Hong-Juan You, Li-Hong Ma, Xing Wang, Yu-Xin Wang, Huan-Yang Zhang, En-Si Bao, Yu-Jie Zhong, Xiang-Ye Liu, De-Long Kong, Kui-Yang Zheng, Fan-Yun Kong, Ren-Xian Tang\",\"doi\":\"10.1007/s13402-023-00889-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>As a vital component of the hepatitis B virus (HBV) nucleocapsid, HBV core protein (HBC) contributes to hepatocarcinogenesis. Here, we aimed to assess the effects of RANGAP1 and KDM2A on tumorigenesis induced by HBC.</p><p><strong>Methods: </strong>Co-immunoprecipitation (Co-IP) combined with mass spectrometry were utilized to identify the proteins with the capacity to interact with HBC. The gene and protein levels of RANGAP1 and KDM2A in hepatocellular carcinoma (HCC) and HBV-positive HCC tissues were evaluated using different cohorts. The roles of RANGAP1 and KDM2A in HCC cells mediated by HBC were investigated in vitro and in vivo. Co-IP and western blot were used to estimate the interaction of HBC with RANGAP1 and KDM2A and assess RANGAP1 stabilization regulated by HBC.</p><p><strong>Results: </strong>We discovered that HBC could interact with RANGAP1 and KDM2A, the levels of which were markedly elevated in HCC tissues. Relying on RANGAP1 and KDM2A, HBC facilitated HCC cell growth and migration. The increased stabilization of RANGAP1 mediated by HBC was relevant to the disruption of the interaction between RANGAP1 and an E3 ligase SYVN1. RANGAP1 interacted with KDM2A, and it further promoted KDM2A stabilization by disturbing the interaction between KDM2A and SYVN1. HBC enhanced the interaction of KDM2A with RANGAP1 and upregulated the expression of KDM2A via RANGAP1 in HCC cells.</p><p><strong>Conclusions: </strong>These findings demonstrate a novel mechanism by which HBC facilitates hepatocarcinogenesis. RANGAP1 and KDM2A could act as potential molecular targets for treating HBV-associated malignancy.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00889-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00889-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:HBV核心蛋白(HBC)是乙型肝炎病毒(HBV)核衣壳的重要组成部分,参与肝癌的发生。在此,我们旨在评估RANGAP1和KDM2A对HBC诱导的肿瘤发生的影响。方法:采用免疫共沉淀(Co-IP)结合质谱法鉴定具有与HBC相互作用能力的蛋白质。使用不同的队列评估肝细胞癌(HCC)和HBV阳性HCC组织中RANGAP1和KDM2A的基因和蛋白质水平。在体外和体内研究了RANGAP1和KDM2A在HBC介导的HCC细胞中的作用。结果:HBC与RANGAP1和KDM2A的相互作用在HCC组织中显著升高。依靠RANGAP1和KDM2A,HBC促进了HCC细胞的生长和迁移。HBC介导的RANGAP1的稳定性增加与RANGAP1和E3连接酶SYVN1之间的相互作用的破坏有关。RANGAP1与KDM2A相互作用,并通过干扰KDM2A与SYVN1之间的相互作用进一步促进KDM2A的稳定。HBC增强了KDM2A与RANGAP1的相互作用,并通过RANGAP1上调了HCC细胞中KDM2A的表达。结论:这些发现证明了HBC促进肝癌发生的一种新机制。RANGAP1和KDM2A可作为治疗HBV相关恶性肿瘤的潜在分子靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hepatitis B virus core protein stabilizes RANGAP1 to upregulate KDM2A and facilitate hepatocarcinogenesis.

Purpose: As a vital component of the hepatitis B virus (HBV) nucleocapsid, HBV core protein (HBC) contributes to hepatocarcinogenesis. Here, we aimed to assess the effects of RANGAP1 and KDM2A on tumorigenesis induced by HBC.

Methods: Co-immunoprecipitation (Co-IP) combined with mass spectrometry were utilized to identify the proteins with the capacity to interact with HBC. The gene and protein levels of RANGAP1 and KDM2A in hepatocellular carcinoma (HCC) and HBV-positive HCC tissues were evaluated using different cohorts. The roles of RANGAP1 and KDM2A in HCC cells mediated by HBC were investigated in vitro and in vivo. Co-IP and western blot were used to estimate the interaction of HBC with RANGAP1 and KDM2A and assess RANGAP1 stabilization regulated by HBC.

Results: We discovered that HBC could interact with RANGAP1 and KDM2A, the levels of which were markedly elevated in HCC tissues. Relying on RANGAP1 and KDM2A, HBC facilitated HCC cell growth and migration. The increased stabilization of RANGAP1 mediated by HBC was relevant to the disruption of the interaction between RANGAP1 and an E3 ligase SYVN1. RANGAP1 interacted with KDM2A, and it further promoted KDM2A stabilization by disturbing the interaction between KDM2A and SYVN1. HBC enhanced the interaction of KDM2A with RANGAP1 and upregulated the expression of KDM2A via RANGAP1 in HCC cells.

Conclusions: These findings demonstrate a novel mechanism by which HBC facilitates hepatocarcinogenesis. RANGAP1 and KDM2A could act as potential molecular targets for treating HBV-associated malignancy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
期刊最新文献
Non-glycanated ΔDCN isoform in muscle invasive bladder cancer mediates cancer stemness and gemcitabine resistance. SPG21, a potential oncogene targeted by miR-128-3p, amplifies HBx-induced carcinogenesis and chemoresistance via activation of TRPM7-mediated JNK pathway in hepatocellular carcinoma. Targeted gene delivery systems for T-cell engineering. HVEM in acute lymphocytic leukemia facilitates tumour immune escape by inhibiting CD8+ T cell function. COLEC10 inhibits the stemness of hepatocellular carcinoma by suppressing the activity of β-catenin signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1