大豆品种对SMV感染反应的综合分析:基因型关联、分子特征和防御基因表达。

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal, genetic engineering & biotechnology Pub Date : 2023-10-17 DOI:10.1186/s43141-023-00558-x
Mohammed A Eid, Gehan N Momeh, Abd El-Raheem R El-Shanshoury, Nanis G Allam, Reda M Gaafar
{"title":"大豆品种对SMV感染反应的综合分析:基因型关联、分子特征和防御基因表达。","authors":"Mohammed A Eid, Gehan N Momeh, Abd El-Raheem R El-Shanshoury, Nanis G Allam, Reda M Gaafar","doi":"10.1186/s43141-023-00558-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Soybean mosaic virus (SMV) is a devastating disease that threatens soybean plants worldwide. The different soybean genotypes displayed different responses to SMV strains. This study aimed to investigate the response of different selected soybean cultivars to SMV infection in Egypt based on their specific genetic makeup.</p><p><strong>Result: </strong>The symptoms of SMV infection and the viral concentration were evaluated in eight soybean cultivars (Giza 21, Giza 22, Giza 35, Giza 82, Giza 111, Crawford, H4L4, and PI416937) using ELISA assay. The results indicated that Giza 21 and Giza 35 were moderately tolerant to SMV infection, while Giza 82 was the least tolerant cultivar. Giza 22, Giza 111, and PI416937 were less tolerant; however, H4L4 and Crawford were identified as the most tolerant cultivars against SMV infection. The chi-square analysis showed a significant association between the different selected cultivars and their response against SMV infection. The PCR test showed the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci, and the absence of the RSV4 locus gene. The expression analysis of the selected defense genes (EDS1, PAD4, EDR1, ERF1, and JAR) showed variations in the fold changes between infected and non-infected soybean cultivars, suggesting that these genes might play a crucial role in this pathosystem. Additionally, there was a strong positive association between the expression levels of EDR1 and ERF1.</p><p><strong>Conclusion: </strong>The study found the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci in selected soybean cultivars, but not RSV4. The analysis of gene expression indicated that certain defense genes may play a vital role in the pathosystem. This research is the first of its kind in Egypt to genotype soybean cultivars regarding different RSV loci. The findings could be beneficial for further research on understanding the molecular mechanisms involved in SMV infection and its management.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581962/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of soybean cultivars' response to SMV infection: genotypic association, molecular characterization, and defense gene expressions.\",\"authors\":\"Mohammed A Eid, Gehan N Momeh, Abd El-Raheem R El-Shanshoury, Nanis G Allam, Reda M Gaafar\",\"doi\":\"10.1186/s43141-023-00558-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Soybean mosaic virus (SMV) is a devastating disease that threatens soybean plants worldwide. The different soybean genotypes displayed different responses to SMV strains. This study aimed to investigate the response of different selected soybean cultivars to SMV infection in Egypt based on their specific genetic makeup.</p><p><strong>Result: </strong>The symptoms of SMV infection and the viral concentration were evaluated in eight soybean cultivars (Giza 21, Giza 22, Giza 35, Giza 82, Giza 111, Crawford, H4L4, and PI416937) using ELISA assay. The results indicated that Giza 21 and Giza 35 were moderately tolerant to SMV infection, while Giza 82 was the least tolerant cultivar. Giza 22, Giza 111, and PI416937 were less tolerant; however, H4L4 and Crawford were identified as the most tolerant cultivars against SMV infection. The chi-square analysis showed a significant association between the different selected cultivars and their response against SMV infection. The PCR test showed the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci, and the absence of the RSV4 locus gene. The expression analysis of the selected defense genes (EDS1, PAD4, EDR1, ERF1, and JAR) showed variations in the fold changes between infected and non-infected soybean cultivars, suggesting that these genes might play a crucial role in this pathosystem. Additionally, there was a strong positive association between the expression levels of EDR1 and ERF1.</p><p><strong>Conclusion: </strong>The study found the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci in selected soybean cultivars, but not RSV4. The analysis of gene expression indicated that certain defense genes may play a vital role in the pathosystem. This research is the first of its kind in Egypt to genotype soybean cultivars regarding different RSV loci. The findings could be beneficial for further research on understanding the molecular mechanisms involved in SMV infection and its management.</p>\",\"PeriodicalId\":74026,\"journal\":{\"name\":\"Journal, genetic engineering & biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal, genetic engineering & biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43141-023-00558-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00558-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:大豆花叶病毒(SMV)是一种危害全球大豆植物的毁灭性疾病。不同的大豆基因型对SMV菌株表现出不同的反应。本研究旨在根据埃及不同大豆品种的特定基因组成,研究其对SMV感染的反应。结果:采用ELISA法对8个大豆品种(吉萨21、吉萨22、吉萨35、吉萨82、吉萨111、克劳福德、H4L4和PI416937)的SMV感染症状和病毒浓度进行了评价。结果表明,Giza 21和Giza 35对SMV感染具有中等耐受性,而Giza 82是最不耐受的品种。Giza 22、Giza 111和PI416937的耐受性较差;H4L4和克劳福德被鉴定为对SMV感染最具耐受性的品种。卡方分析显示,不同选择的品种与其对SMV感染的反应之间存在显著关联。PCR检测显示存在RSV1(3gG2)、RSV1(5gG3)和RSV3基因座,并且不存在RSV4基因座基因。对所选防御基因(EDS1、PAD4、EDR1、ERF1和JAR)的表达分析显示,受感染和未受感染的大豆品种之间的倍数变化存在差异,表明这些基因可能在该病理系统中发挥关键作用。此外,EDR1和ERF1的表达水平之间存在很强的正相关。结论:研究发现,在选定的大豆品种中存在RSV1(3gG2)、RSV1(5gG3)和RSV3基因座,但没有RSV4基因座。基因表达分析表明,某些防御基因可能在病理系统中起着至关重要的作用。这项研究是埃及首次对不同RSV基因座的大豆品种进行基因分型。这些发现可能有助于进一步研究SMV感染及其管理的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive analysis of soybean cultivars' response to SMV infection: genotypic association, molecular characterization, and defense gene expressions.

Background: Soybean mosaic virus (SMV) is a devastating disease that threatens soybean plants worldwide. The different soybean genotypes displayed different responses to SMV strains. This study aimed to investigate the response of different selected soybean cultivars to SMV infection in Egypt based on their specific genetic makeup.

Result: The symptoms of SMV infection and the viral concentration were evaluated in eight soybean cultivars (Giza 21, Giza 22, Giza 35, Giza 82, Giza 111, Crawford, H4L4, and PI416937) using ELISA assay. The results indicated that Giza 21 and Giza 35 were moderately tolerant to SMV infection, while Giza 82 was the least tolerant cultivar. Giza 22, Giza 111, and PI416937 were less tolerant; however, H4L4 and Crawford were identified as the most tolerant cultivars against SMV infection. The chi-square analysis showed a significant association between the different selected cultivars and their response against SMV infection. The PCR test showed the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci, and the absence of the RSV4 locus gene. The expression analysis of the selected defense genes (EDS1, PAD4, EDR1, ERF1, and JAR) showed variations in the fold changes between infected and non-infected soybean cultivars, suggesting that these genes might play a crucial role in this pathosystem. Additionally, there was a strong positive association between the expression levels of EDR1 and ERF1.

Conclusion: The study found the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci in selected soybean cultivars, but not RSV4. The analysis of gene expression indicated that certain defense genes may play a vital role in the pathosystem. This research is the first of its kind in Egypt to genotype soybean cultivars regarding different RSV loci. The findings could be beneficial for further research on understanding the molecular mechanisms involved in SMV infection and its management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria. Whole genome sequence and comparative genomics analysis of multidrug-resistant Staphylococcus xylosus NM36 isolated from a cow with mastitis in Basrah city. Immunoinformatics-aided rational design of multiepitope-based peptide vaccine (MEBV) targeting human parainfluenza virus 3 (HPIV-3) stable proteins. Isolation of plant growth-promoting rhizobacteria from the agricultural fields of Tattiannaram, Telangana. Short tandem repeat (STR) variation from 6 cities in Iraq based on 15 loci.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1