{"title":"通过串联质谱法在土耳其儿科人群中建立氨基酸和酰基肉毒碱的年龄和性别特异性参考区间。","authors":"Özlem Çakır Madenci, Soner Erdin, Ayşe Kestane, Müge Kutnu","doi":"10.11613/BM.2023.030704","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>We determined age- and gender-specific reference intervals (RIs) for acylcarnitines and amino acids by tandem mass spectrometry (MS/MS) in the Turkish paediatric population by using laboratory information system (LIS) data.</p><p><strong>Materials and methods: </strong>A total of 9156 MS/MS results of children between 0-18 years of age, were downloaded from the LIS. Premature infants and newborns followed in the intensive care unit were excluded and only the first result of each patient attending outpatient clinics was included. Children with a known or suspected diagnosis of metabolic disease, malignancy, epilepsy, mental retardation, or genetic disorder were excluded. Laboratory results were evaluated and children with any pathological laboratory finding were excluded, resulting in a final sample size of 3357 (2029 boys and 1328 girls). Blood was collected by capillary puncture and spotted on Whatman 903 filter paper cards and analysed by MS/MS (Shimadzu LCMS-8050, Shimadzu Corporation, Kyoto, Japan). Data were evaluated for age and gender differences and age partitioning was performed according to the literature and visual evaluation of the data. Age subgroups were: ≤ 1 month, 2 months-1 year, 2-5 years, 6-10 years, and 11-18 years.</p><p><strong>Results: </strong>There were significant age-related differences for the majority of amino acids and acylcarnitines thus age dependent RIs were established. Gender-specific RIs were established for tyrosine, leucine-isoleucine, isovalerylcarnitine (C5) and hexadecanoylcarnitine (C16).</p><p><strong>Conclusions: </strong>Establishing age-related RIs can enhance the quality of medical care by facilitating early diagnosis and therapy, especially in certain metabolic disorders presenting with mild biochemical abnormalities and subtle clinical manifestations.</p>","PeriodicalId":94370,"journal":{"name":"Biochemia medica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564151/pdf/","citationCount":"0","resultStr":"{\"title\":\"Establishment of age- and -gender specific reference intervals for amino acids and acylcarnitines by tandem mass spectrometry in Turkish paediatric population.\",\"authors\":\"Özlem Çakır Madenci, Soner Erdin, Ayşe Kestane, Müge Kutnu\",\"doi\":\"10.11613/BM.2023.030704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>We determined age- and gender-specific reference intervals (RIs) for acylcarnitines and amino acids by tandem mass spectrometry (MS/MS) in the Turkish paediatric population by using laboratory information system (LIS) data.</p><p><strong>Materials and methods: </strong>A total of 9156 MS/MS results of children between 0-18 years of age, were downloaded from the LIS. Premature infants and newborns followed in the intensive care unit were excluded and only the first result of each patient attending outpatient clinics was included. Children with a known or suspected diagnosis of metabolic disease, malignancy, epilepsy, mental retardation, or genetic disorder were excluded. Laboratory results were evaluated and children with any pathological laboratory finding were excluded, resulting in a final sample size of 3357 (2029 boys and 1328 girls). Blood was collected by capillary puncture and spotted on Whatman 903 filter paper cards and analysed by MS/MS (Shimadzu LCMS-8050, Shimadzu Corporation, Kyoto, Japan). Data were evaluated for age and gender differences and age partitioning was performed according to the literature and visual evaluation of the data. Age subgroups were: ≤ 1 month, 2 months-1 year, 2-5 years, 6-10 years, and 11-18 years.</p><p><strong>Results: </strong>There were significant age-related differences for the majority of amino acids and acylcarnitines thus age dependent RIs were established. Gender-specific RIs were established for tyrosine, leucine-isoleucine, isovalerylcarnitine (C5) and hexadecanoylcarnitine (C16).</p><p><strong>Conclusions: </strong>Establishing age-related RIs can enhance the quality of medical care by facilitating early diagnosis and therapy, especially in certain metabolic disorders presenting with mild biochemical abnormalities and subtle clinical manifestations.</p>\",\"PeriodicalId\":94370,\"journal\":{\"name\":\"Biochemia medica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564151/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemia medica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11613/BM.2023.030704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemia medica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11613/BM.2023.030704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Establishment of age- and -gender specific reference intervals for amino acids and acylcarnitines by tandem mass spectrometry in Turkish paediatric population.
Introduction: We determined age- and gender-specific reference intervals (RIs) for acylcarnitines and amino acids by tandem mass spectrometry (MS/MS) in the Turkish paediatric population by using laboratory information system (LIS) data.
Materials and methods: A total of 9156 MS/MS results of children between 0-18 years of age, were downloaded from the LIS. Premature infants and newborns followed in the intensive care unit were excluded and only the first result of each patient attending outpatient clinics was included. Children with a known or suspected diagnosis of metabolic disease, malignancy, epilepsy, mental retardation, or genetic disorder were excluded. Laboratory results were evaluated and children with any pathological laboratory finding were excluded, resulting in a final sample size of 3357 (2029 boys and 1328 girls). Blood was collected by capillary puncture and spotted on Whatman 903 filter paper cards and analysed by MS/MS (Shimadzu LCMS-8050, Shimadzu Corporation, Kyoto, Japan). Data were evaluated for age and gender differences and age partitioning was performed according to the literature and visual evaluation of the data. Age subgroups were: ≤ 1 month, 2 months-1 year, 2-5 years, 6-10 years, and 11-18 years.
Results: There were significant age-related differences for the majority of amino acids and acylcarnitines thus age dependent RIs were established. Gender-specific RIs were established for tyrosine, leucine-isoleucine, isovalerylcarnitine (C5) and hexadecanoylcarnitine (C16).
Conclusions: Establishing age-related RIs can enhance the quality of medical care by facilitating early diagnosis and therapy, especially in certain metabolic disorders presenting with mild biochemical abnormalities and subtle clinical manifestations.