从语料库创建到形式发现:大数据修辞团队和方法的力量

Q3 Social Sciences Review of Communication Pub Date : 2023-01-02 DOI:10.1080/15358593.2022.2119094
Sarah E. Ryan, Lingzi Hong, Mohotarema Rashid
{"title":"从语料库创建到形式发现:大数据修辞团队和方法的力量","authors":"Sarah E. Ryan, Lingzi Hong, Mohotarema Rashid","doi":"10.1080/15358593.2022.2119094","DOIUrl":null,"url":null,"abstract":"ABSTRACT Rhetoric has been slow to adopt big-data techniques, but that is changing. In this article, we describe the formative work of our rhetoric-data science team on an ideographic analysis of state veteran laws. Our interdisciplinary approach enabled us to build a corpus of more than 7,000 files, segment that corpus into likely public and private laws, and develop dictionaries for discerning individual entitlements, such as waived fees for gun permits. Early results show state-level trends in the number of veteran laws, proportion of veteran laws concerning disabled veterans, and proportion of veteran/disability laws affording individual entitlements. While this article presents early findings, its broader purpose is to contribute to discussions of corpus building, data cleaning, formative analysis, and the value of big-data-rhetoric collaborations. Our experience provides five insights: (1) big-data collection methods can save a public rhetoric project when customary retrieval methods fail; (2) big-data-rhetoric work starts conceptually and becomes concretized; (3) formative big-data rhetoric work can problematize fundamental research assumptions, such as what should be included in a corpus; (4) big-data methods can produce interesting results early, yielding a roadmap for future work; and (5) big-data-rhetoric teams need more guidance from the field.","PeriodicalId":53587,"journal":{"name":"Review of Communication","volume":"85 22","pages":"38 - 61"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"From corpus creation to formative discovery: the power of big-data-rhetoric teams and methods\",\"authors\":\"Sarah E. Ryan, Lingzi Hong, Mohotarema Rashid\",\"doi\":\"10.1080/15358593.2022.2119094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Rhetoric has been slow to adopt big-data techniques, but that is changing. In this article, we describe the formative work of our rhetoric-data science team on an ideographic analysis of state veteran laws. Our interdisciplinary approach enabled us to build a corpus of more than 7,000 files, segment that corpus into likely public and private laws, and develop dictionaries for discerning individual entitlements, such as waived fees for gun permits. Early results show state-level trends in the number of veteran laws, proportion of veteran laws concerning disabled veterans, and proportion of veteran/disability laws affording individual entitlements. While this article presents early findings, its broader purpose is to contribute to discussions of corpus building, data cleaning, formative analysis, and the value of big-data-rhetoric collaborations. Our experience provides five insights: (1) big-data collection methods can save a public rhetoric project when customary retrieval methods fail; (2) big-data-rhetoric work starts conceptually and becomes concretized; (3) formative big-data rhetoric work can problematize fundamental research assumptions, such as what should be included in a corpus; (4) big-data methods can produce interesting results early, yielding a roadmap for future work; and (5) big-data-rhetoric teams need more guidance from the field.\",\"PeriodicalId\":53587,\"journal\":{\"name\":\"Review of Communication\",\"volume\":\"85 22\",\"pages\":\"38 - 61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15358593.2022.2119094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15358593.2022.2119094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 3

摘要

修辞学在采用大数据技术方面进展缓慢,但这种情况正在改变。在本文中,我们描述了我们的修辞数据科学团队对国家退伍军人法律的表意分析的形成性工作。我们的跨学科方法使我们能够建立一个超过7,000个文件的语料库,将语料库划分为可能的公法和私法,并开发字典以识别个人权利,例如免除枪支许可证费用。早期结果显示了各州在退伍军人法的数量、退伍军人法中涉及残疾退伍军人的比例以及退伍军人/残疾法律中提供个人权利的比例方面的趋势。虽然本文提供了早期的发现,但其更广泛的目的是促进对语料库构建、数据清理、形成性分析以及大数据修辞合作的价值的讨论。我们的经验提供了五个启示:(1)当传统的检索方法失败时,大数据收集方法可以挽救公共修辞项目;(2)大数据修辞工作从概念出发,逐步具体化;(3)形成性大数据修辞学工作可能会对基础研究假设提出问题,例如语料库中应该包含什么;(4)大数据方法可以在早期产生有趣的结果,为未来的工作提供路线图;(5)大数据修辞团队需要更多来自实地的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From corpus creation to formative discovery: the power of big-data-rhetoric teams and methods
ABSTRACT Rhetoric has been slow to adopt big-data techniques, but that is changing. In this article, we describe the formative work of our rhetoric-data science team on an ideographic analysis of state veteran laws. Our interdisciplinary approach enabled us to build a corpus of more than 7,000 files, segment that corpus into likely public and private laws, and develop dictionaries for discerning individual entitlements, such as waived fees for gun permits. Early results show state-level trends in the number of veteran laws, proportion of veteran laws concerning disabled veterans, and proportion of veteran/disability laws affording individual entitlements. While this article presents early findings, its broader purpose is to contribute to discussions of corpus building, data cleaning, formative analysis, and the value of big-data-rhetoric collaborations. Our experience provides five insights: (1) big-data collection methods can save a public rhetoric project when customary retrieval methods fail; (2) big-data-rhetoric work starts conceptually and becomes concretized; (3) formative big-data rhetoric work can problematize fundamental research assumptions, such as what should be included in a corpus; (4) big-data methods can produce interesting results early, yielding a roadmap for future work; and (5) big-data-rhetoric teams need more guidance from the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Communication
Review of Communication Social Sciences-Communication
CiteScore
1.70
自引率
0.00%
发文量
16
期刊最新文献
Student-to-student confirmation: a review and recommendations for research Theorizing about persuasive message repetition in communication research: a systematic review Students’ peer network quality: effects on academic resilience and intention to persist Marginalizing mortality: the fight against death as the communicative cultural condition Assessing the communicative experience of student orientation leaders: peer and professional
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1