{"title":"印度尼西亚Covid19患者分析的预测方法是线性回归和未监督学习","authors":"Y. Cahyana, Amril Mutoi Siregar","doi":"10.30998/faktorexacta.v14i3.10591","DOIUrl":null,"url":null,"abstract":"Penyakit COVID-19 sekarang ini telah dinyatakan penyeakit pandemic karena tingkat penyebaran dan resiko yang ditimbulkan sangat berbahaya. Berbagai langkah seperti program awareness social distancing dan contact tracing telah dilakukan untuk mengendalikan wabah COVID-19. Jika tidak ada vaksin prediksi kasus yang dikonfirmasi meninggal dan pulih diperlukan untuk meningkatkan kapasitas sistem perawatan kesehatan dan mengendalikan penularan. Dalam studi ini kasus kumulatif dan harian dikonfirmasi meninggal dan pulih di Indonesia. Analisisa tidak mempertimbangkan perubahan apa pun dalam tindakan pengendalian pemerintah. Informasi dari studi ini dapat memberikan informasi yang relevan kepada pemerintah dan pejabat Kesehatan dan masyarakat. Bagaimana tingkat kesembuhan terhadap terkonfirmasi tingkat kematian terhadap jumlah penderita. Penelitian ini menggunakan model regresi dan clustering dengan K-means menggunakan unsupervised learning dan supervised learning untuk membangun distribusi model. Hasil penelitian ini dengan metode regresi dengan R2 = 0.99 sedangkan untuk clustering denga K= interval 10 - 15 dilihat dari hasil metode elbow The COVID-19 disease has now been declared a pandemic disease because the level of spread and the risk posed is very dangerous. Various steps such as awareness programs, social distancing, and contact tracing have been taken to control the COVID-19 outbreak. In the absence of a vaccine, prediction of confirmed cases, deaths, and recoveries is needed to increase the capacity of the health care system and control transmission. In this study, cumulative and daily cases were confirmed, died, and recovered in Indonesia. The analysis does not consider any changes in government control measures. Information from this study can provide relevant information to government and health officials and the public. How is the cure rate to the confirmed, the death rate to the number of sufferers? This study uses regression and clustering models with K-means, using unsupervised learning and supervised learning to build the distribution model. The results of this study using the regression method with R2 = 0.99, while for clustering with K = 10 - 15 intervals seen from the results of the elbow method. Keywords: COVID-19, Regresi, Unsupervised learning, Prediction, k-means","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"48 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediksi Analisis Penderita Covid19 di Indonesia dengan Metode Linier Regresi dan Unsupervised Learning\",\"authors\":\"Y. Cahyana, Amril Mutoi Siregar\",\"doi\":\"10.30998/faktorexacta.v14i3.10591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penyakit COVID-19 sekarang ini telah dinyatakan penyeakit pandemic karena tingkat penyebaran dan resiko yang ditimbulkan sangat berbahaya. Berbagai langkah seperti program awareness social distancing dan contact tracing telah dilakukan untuk mengendalikan wabah COVID-19. Jika tidak ada vaksin prediksi kasus yang dikonfirmasi meninggal dan pulih diperlukan untuk meningkatkan kapasitas sistem perawatan kesehatan dan mengendalikan penularan. Dalam studi ini kasus kumulatif dan harian dikonfirmasi meninggal dan pulih di Indonesia. Analisisa tidak mempertimbangkan perubahan apa pun dalam tindakan pengendalian pemerintah. Informasi dari studi ini dapat memberikan informasi yang relevan kepada pemerintah dan pejabat Kesehatan dan masyarakat. Bagaimana tingkat kesembuhan terhadap terkonfirmasi tingkat kematian terhadap jumlah penderita. Penelitian ini menggunakan model regresi dan clustering dengan K-means menggunakan unsupervised learning dan supervised learning untuk membangun distribusi model. Hasil penelitian ini dengan metode regresi dengan R2 = 0.99 sedangkan untuk clustering denga K= interval 10 - 15 dilihat dari hasil metode elbow The COVID-19 disease has now been declared a pandemic disease because the level of spread and the risk posed is very dangerous. Various steps such as awareness programs, social distancing, and contact tracing have been taken to control the COVID-19 outbreak. In the absence of a vaccine, prediction of confirmed cases, deaths, and recoveries is needed to increase the capacity of the health care system and control transmission. In this study, cumulative and daily cases were confirmed, died, and recovered in Indonesia. The analysis does not consider any changes in government control measures. Information from this study can provide relevant information to government and health officials and the public. How is the cure rate to the confirmed, the death rate to the number of sufferers? This study uses regression and clustering models with K-means, using unsupervised learning and supervised learning to build the distribution model. The results of this study using the regression method with R2 = 0.99, while for clustering with K = 10 - 15 intervals seen from the results of the elbow method. Keywords: COVID-19, Regresi, Unsupervised learning, Prediction, k-means\",\"PeriodicalId\":53004,\"journal\":{\"name\":\"Faktor Exacta\",\"volume\":\"48 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faktor Exacta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30998/faktorexacta.v14i3.10591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faktor Exacta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30998/faktorexacta.v14i3.10591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediksi Analisis Penderita Covid19 di Indonesia dengan Metode Linier Regresi dan Unsupervised Learning
Penyakit COVID-19 sekarang ini telah dinyatakan penyeakit pandemic karena tingkat penyebaran dan resiko yang ditimbulkan sangat berbahaya. Berbagai langkah seperti program awareness social distancing dan contact tracing telah dilakukan untuk mengendalikan wabah COVID-19. Jika tidak ada vaksin prediksi kasus yang dikonfirmasi meninggal dan pulih diperlukan untuk meningkatkan kapasitas sistem perawatan kesehatan dan mengendalikan penularan. Dalam studi ini kasus kumulatif dan harian dikonfirmasi meninggal dan pulih di Indonesia. Analisisa tidak mempertimbangkan perubahan apa pun dalam tindakan pengendalian pemerintah. Informasi dari studi ini dapat memberikan informasi yang relevan kepada pemerintah dan pejabat Kesehatan dan masyarakat. Bagaimana tingkat kesembuhan terhadap terkonfirmasi tingkat kematian terhadap jumlah penderita. Penelitian ini menggunakan model regresi dan clustering dengan K-means menggunakan unsupervised learning dan supervised learning untuk membangun distribusi model. Hasil penelitian ini dengan metode regresi dengan R2 = 0.99 sedangkan untuk clustering denga K= interval 10 - 15 dilihat dari hasil metode elbow The COVID-19 disease has now been declared a pandemic disease because the level of spread and the risk posed is very dangerous. Various steps such as awareness programs, social distancing, and contact tracing have been taken to control the COVID-19 outbreak. In the absence of a vaccine, prediction of confirmed cases, deaths, and recoveries is needed to increase the capacity of the health care system and control transmission. In this study, cumulative and daily cases were confirmed, died, and recovered in Indonesia. The analysis does not consider any changes in government control measures. Information from this study can provide relevant information to government and health officials and the public. How is the cure rate to the confirmed, the death rate to the number of sufferers? This study uses regression and clustering models with K-means, using unsupervised learning and supervised learning to build the distribution model. The results of this study using the regression method with R2 = 0.99, while for clustering with K = 10 - 15 intervals seen from the results of the elbow method. Keywords: COVID-19, Regresi, Unsupervised learning, Prediction, k-means