{"title":"单用户和多用户正交啁啾分复用系统中基于啁啾选择的峰值平均功率比降低技术","authors":"Vincent Savaux","doi":"10.1049/sil2.12215","DOIUrl":null,"url":null,"abstract":"<p>This article deals with peak to average power (PAPR) reduction in a single and multi-user orthogonal chirp division multiplexing (OCDM) context. Two methods for PAPR reduction based on the selection of the frequency variation (up or down) of the chirps are first presented in a single user system. The first technique consists in considering two OCDM signals generated with up and down chirps, respectively, and selecting the one offering lowest PAPR. The second PAPR reduction method is based on usual clipping, and in that case the chirp selection aims to reduce the clipping noise. An adapted receiver is presented, based on the maximum likelihood estimation of the frequency variation (up or down) of the chirp. Then, a general procedure for multi-user OCDM transmission is introduced, where a sub-band of the available bandwidth is dedicated to each user, whose frequency of the chirps varies within this sub-band. Next, the PAPR reduction techniques are generalised to this multi-user OCDM system. Moreover, a performance analysis of the first PAPR reduction method is developed, and it is shown through simulations that theoretical and numerical results match for both Nyquist rate and oversampled signals. It is also shown that the chirp selection reduces the clipping noise, and improves the bit error rate performance compared with clipping only.</p>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"17 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12215","citationCount":"0","resultStr":"{\"title\":\"Peak to average power ratio reduction techniques based on chirp selection for single and multi-user orthogonal chirp division multiplexing system\",\"authors\":\"Vincent Savaux\",\"doi\":\"10.1049/sil2.12215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article deals with peak to average power (PAPR) reduction in a single and multi-user orthogonal chirp division multiplexing (OCDM) context. Two methods for PAPR reduction based on the selection of the frequency variation (up or down) of the chirps are first presented in a single user system. The first technique consists in considering two OCDM signals generated with up and down chirps, respectively, and selecting the one offering lowest PAPR. The second PAPR reduction method is based on usual clipping, and in that case the chirp selection aims to reduce the clipping noise. An adapted receiver is presented, based on the maximum likelihood estimation of the frequency variation (up or down) of the chirp. Then, a general procedure for multi-user OCDM transmission is introduced, where a sub-band of the available bandwidth is dedicated to each user, whose frequency of the chirps varies within this sub-band. Next, the PAPR reduction techniques are generalised to this multi-user OCDM system. Moreover, a performance analysis of the first PAPR reduction method is developed, and it is shown through simulations that theoretical and numerical results match for both Nyquist rate and oversampled signals. It is also shown that the chirp selection reduces the clipping noise, and improves the bit error rate performance compared with clipping only.</p>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12215\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12215\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12215","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Peak to average power ratio reduction techniques based on chirp selection for single and multi-user orthogonal chirp division multiplexing system
This article deals with peak to average power (PAPR) reduction in a single and multi-user orthogonal chirp division multiplexing (OCDM) context. Two methods for PAPR reduction based on the selection of the frequency variation (up or down) of the chirps are first presented in a single user system. The first technique consists in considering two OCDM signals generated with up and down chirps, respectively, and selecting the one offering lowest PAPR. The second PAPR reduction method is based on usual clipping, and in that case the chirp selection aims to reduce the clipping noise. An adapted receiver is presented, based on the maximum likelihood estimation of the frequency variation (up or down) of the chirp. Then, a general procedure for multi-user OCDM transmission is introduced, where a sub-band of the available bandwidth is dedicated to each user, whose frequency of the chirps varies within this sub-band. Next, the PAPR reduction techniques are generalised to this multi-user OCDM system. Moreover, a performance analysis of the first PAPR reduction method is developed, and it is shown through simulations that theoretical and numerical results match for both Nyquist rate and oversampled signals. It is also shown that the chirp selection reduces the clipping noise, and improves the bit error rate performance compared with clipping only.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf