铝合金搅拌摩擦焊中合金类型和热力学对气孔形成影响的数值研究

IF 2.4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Journal of Manufacturing Science and Engineering-transactions of The Asme Pub Date : 2023-04-05 DOI:10.1115/1.4062270
M. Ansari, Hemant Agiwal, D. Franke, M. Zinn, F. Pfefferkorn, S. Rudraraju
{"title":"铝合金搅拌摩擦焊中合金类型和热力学对气孔形成影响的数值研究","authors":"M. Ansari, Hemant Agiwal, D. Franke, M. Zinn, F. Pfefferkorn, S. Rudraraju","doi":"10.1115/1.4062270","DOIUrl":null,"url":null,"abstract":"\n This study employs a high-fidelity numerical framework to determine the plastic material flow patterns and temperature distributions that lead to void formation during friction stir welding (FSW), and to relate the void morphologies to the underlying alloy material properties and process conditions. Three aluminum alloys, viz., 6061-T6, 7075-T6, and 5053-H18 were investigated under varying traverse speeds. The choice of aluminum alloys enables investigation of a wide range of thermal and mechanical properties. The numerical simulations were validated using experimental observations of void morphologies in these three alloys. Temperatures, plastic strain rates, and material flow patterns are considered. The key results from this study are: (1) The predicted stir zone and void morphology are in good agreement with the experimental observations, (2) The temperature and plastic strain-rate maps in the steady-state process conditions show a strong dependency on the alloy type and traverse speeds, (3) The material velocity contours provide a good insight into the material flow in the stir zone for the FSW process conditions that result in voids as well as those that do not result in voids. The numerical model and the ensuing parametric studies presented in this work provide a framework for understanding material flow under different process conditions in aluminum alloys, and potentially in other alloys. Furthermore, the utility of the numerical model for making quantitative predictions and investigating different process parameters to reduce void formation is demonstrated.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"68 11","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation into the influence of alloy type and thermo-mechanics on void formation in Friction Stir Welding of Aluminium alloys\",\"authors\":\"M. Ansari, Hemant Agiwal, D. Franke, M. Zinn, F. Pfefferkorn, S. Rudraraju\",\"doi\":\"10.1115/1.4062270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study employs a high-fidelity numerical framework to determine the plastic material flow patterns and temperature distributions that lead to void formation during friction stir welding (FSW), and to relate the void morphologies to the underlying alloy material properties and process conditions. Three aluminum alloys, viz., 6061-T6, 7075-T6, and 5053-H18 were investigated under varying traverse speeds. The choice of aluminum alloys enables investigation of a wide range of thermal and mechanical properties. The numerical simulations were validated using experimental observations of void morphologies in these three alloys. Temperatures, plastic strain rates, and material flow patterns are considered. The key results from this study are: (1) The predicted stir zone and void morphology are in good agreement with the experimental observations, (2) The temperature and plastic strain-rate maps in the steady-state process conditions show a strong dependency on the alloy type and traverse speeds, (3) The material velocity contours provide a good insight into the material flow in the stir zone for the FSW process conditions that result in voids as well as those that do not result in voids. The numerical model and the ensuing parametric studies presented in this work provide a framework for understanding material flow under different process conditions in aluminum alloys, and potentially in other alloys. Furthermore, the utility of the numerical model for making quantitative predictions and investigating different process parameters to reduce void formation is demonstrated.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":\"68 11\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062270\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062270","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用高保真数值框架来确定搅拌摩擦焊(FSW)过程中导致空洞形成的塑性材料流动模式和温度分布,并将空洞形态与潜在的合金材料性能和工艺条件联系起来。研究了6061-T6、7075-T6和5053-H18三种铝合金在不同导线速度下的性能。铝合金的选择可以研究广泛的热性能和机械性能。通过对三种合金空穴形貌的实验观察,验证了数值模拟的正确性。考虑了温度、塑性应变率和材料流动模式。关键从这项研究结果:(1)预测搅拌区和孔隙形态良好的协议与实验观察,(2)稳态过程中的温度和塑性应变率图条件下表现出强烈的依赖合金类型和遍历速度,(3)材料的速度轮廓提供良好的洞察物质流在搅拌区对FSW过程条件,导致孔隙以及那些不会导致空洞。本研究中提出的数值模型和随后的参数研究为理解铝合金和其他合金在不同工艺条件下的物质流动提供了一个框架。此外,还证明了数值模型在定量预测和研究不同工艺参数以减少孔隙形成方面的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation into the influence of alloy type and thermo-mechanics on void formation in Friction Stir Welding of Aluminium alloys
This study employs a high-fidelity numerical framework to determine the plastic material flow patterns and temperature distributions that lead to void formation during friction stir welding (FSW), and to relate the void morphologies to the underlying alloy material properties and process conditions. Three aluminum alloys, viz., 6061-T6, 7075-T6, and 5053-H18 were investigated under varying traverse speeds. The choice of aluminum alloys enables investigation of a wide range of thermal and mechanical properties. The numerical simulations were validated using experimental observations of void morphologies in these three alloys. Temperatures, plastic strain rates, and material flow patterns are considered. The key results from this study are: (1) The predicted stir zone and void morphology are in good agreement with the experimental observations, (2) The temperature and plastic strain-rate maps in the steady-state process conditions show a strong dependency on the alloy type and traverse speeds, (3) The material velocity contours provide a good insight into the material flow in the stir zone for the FSW process conditions that result in voids as well as those that do not result in voids. The numerical model and the ensuing parametric studies presented in this work provide a framework for understanding material flow under different process conditions in aluminum alloys, and potentially in other alloys. Furthermore, the utility of the numerical model for making quantitative predictions and investigating different process parameters to reduce void formation is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
20.00%
发文量
126
审稿时长
12 months
期刊介绍: Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining
期刊最新文献
CONTINUOUS STEREOLITHOGRAPHY 3D PRINTING OF MULTI-NETWORK HYDROGELS IN TRIPLY PERIODIC MINIMAL STRUCTURES (TPMS) WITH TUNABLE MECHANICAL STRENGTH FOR ENERGY ABSORPTION A Review of Prospects and Opportunities in Disassembly with Human-Robot Collaboration The Effect of Microstructure on the Machinability of Natural Fiber Reinforced Plastic Composites: A Novel Explainable Machine Learning (XML) Approach A Digital Twin-based environment-adaptive assignment method for human-robot collaboration Combining Flexible and Sustainable Design Principles for Evaluating Designs: Textile Recycling Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1