Hannah M. ter Hofstede, L. Symes, S. Martinson, T. Robillard, P. Faure, S. Madhusudhana, R. Page
{"title":"巴拿马新热带蝈蝈儿(直翅目:蝈蝈儿科)的鸣叫","authors":"Hannah M. ter Hofstede, L. Symes, S. Martinson, T. Robillard, P. Faure, S. Madhusudhana, R. Page","doi":"10.3897/jor.29.46371","DOIUrl":null,"url":null,"abstract":"Understanding the ecology and evolution of animal communication systems requires detailed data on signal structure and variation across species. Here, we describe the male acoustic signals of 50 species of Neotropical katydids (Orthoptera: Tettigoniidae) from Panama, with the goal of providing data and recordings for future research on katydid communication, evolution, ecology, and conservation. Male katydids were recorded individually using an ultrasound-sensitive microphone and high-sampling rate data acquisition board to capture both audible and ultrasonic components of calls. Calls varied enormously in duration, temporal patterning, peak frequency, and bandwidth both across and within subfamilies. We confirm previous studies showing that katydid species within the subfamily Pseudophyllinae produced short calls (<250 ms) at long intervals and we confirm that this is true for species in the subfamily Phaneropterinae as well. Species in the Conocephalinae, on the other hand, typically produced highly repetitive calls over longer periods of time. However, there were exceptions to this pattern, with a few species in the Conocephalinae producing very short calls at long intervals, and some species in the Phaneropterinae producing relatively long calls (1–6 s) or calling frequently. Our results also confirm previous studies showing a relationship between katydid size and the peak frequency of the call, with smaller katydids producing higher frequency calls, but the slope of this relationship differed with subfamily. We discuss the value of documenting the diversity in katydid calls for both basic studies on the ecology, evolution, and behavior of these species as well as the potential conservation benefits for bioacoustics monitoring programs.","PeriodicalId":53641,"journal":{"name":"Journal of Orthoptera Research","volume":"61 29","pages":"137-201"},"PeriodicalIF":1.0000,"publicationDate":"2020-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Calling songs of Neotropical katydids (Orthoptera: Tettigoniidae) from Panama\",\"authors\":\"Hannah M. ter Hofstede, L. Symes, S. Martinson, T. Robillard, P. Faure, S. Madhusudhana, R. Page\",\"doi\":\"10.3897/jor.29.46371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the ecology and evolution of animal communication systems requires detailed data on signal structure and variation across species. Here, we describe the male acoustic signals of 50 species of Neotropical katydids (Orthoptera: Tettigoniidae) from Panama, with the goal of providing data and recordings for future research on katydid communication, evolution, ecology, and conservation. Male katydids were recorded individually using an ultrasound-sensitive microphone and high-sampling rate data acquisition board to capture both audible and ultrasonic components of calls. Calls varied enormously in duration, temporal patterning, peak frequency, and bandwidth both across and within subfamilies. We confirm previous studies showing that katydid species within the subfamily Pseudophyllinae produced short calls (<250 ms) at long intervals and we confirm that this is true for species in the subfamily Phaneropterinae as well. Species in the Conocephalinae, on the other hand, typically produced highly repetitive calls over longer periods of time. However, there were exceptions to this pattern, with a few species in the Conocephalinae producing very short calls at long intervals, and some species in the Phaneropterinae producing relatively long calls (1–6 s) or calling frequently. Our results also confirm previous studies showing a relationship between katydid size and the peak frequency of the call, with smaller katydids producing higher frequency calls, but the slope of this relationship differed with subfamily. We discuss the value of documenting the diversity in katydid calls for both basic studies on the ecology, evolution, and behavior of these species as well as the potential conservation benefits for bioacoustics monitoring programs.\",\"PeriodicalId\":53641,\"journal\":{\"name\":\"Journal of Orthoptera Research\",\"volume\":\"61 29\",\"pages\":\"137-201\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthoptera Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/jor.29.46371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthoptera Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/jor.29.46371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Calling songs of Neotropical katydids (Orthoptera: Tettigoniidae) from Panama
Understanding the ecology and evolution of animal communication systems requires detailed data on signal structure and variation across species. Here, we describe the male acoustic signals of 50 species of Neotropical katydids (Orthoptera: Tettigoniidae) from Panama, with the goal of providing data and recordings for future research on katydid communication, evolution, ecology, and conservation. Male katydids were recorded individually using an ultrasound-sensitive microphone and high-sampling rate data acquisition board to capture both audible and ultrasonic components of calls. Calls varied enormously in duration, temporal patterning, peak frequency, and bandwidth both across and within subfamilies. We confirm previous studies showing that katydid species within the subfamily Pseudophyllinae produced short calls (<250 ms) at long intervals and we confirm that this is true for species in the subfamily Phaneropterinae as well. Species in the Conocephalinae, on the other hand, typically produced highly repetitive calls over longer periods of time. However, there were exceptions to this pattern, with a few species in the Conocephalinae producing very short calls at long intervals, and some species in the Phaneropterinae producing relatively long calls (1–6 s) or calling frequently. Our results also confirm previous studies showing a relationship between katydid size and the peak frequency of the call, with smaller katydids producing higher frequency calls, but the slope of this relationship differed with subfamily. We discuss the value of documenting the diversity in katydid calls for both basic studies on the ecology, evolution, and behavior of these species as well as the potential conservation benefits for bioacoustics monitoring programs.