用人工神经网络确定路基和颗粒基层的加州承载比

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2023-07-04 DOI:10.46604/ijeti.2023.11053
Jose Manuel Palomino Ojeda, Billy Alexis Cayatopa Calderon, Lenin Quiñones Huatangari, Wilmer Rojas Pintado
{"title":"用人工神经网络确定路基和颗粒基层的加州承载比","authors":"Jose Manuel Palomino Ojeda, Billy Alexis Cayatopa Calderon, Lenin Quiñones Huatangari, Wilmer Rojas Pintado","doi":"10.46604/ijeti.2023.11053","DOIUrl":null,"url":null,"abstract":"The objective of the research is to estimate the value of the California bearing ratio (CBR) through the application of ANN. The methodology consists of creating a database with soil index and CBR variables of the subgrades and granular base of pavements in Jaen, Peru, carried out in the soil mechanics laboratories of the city and the National University of Jaen. In addition, the Python library Seaborn is for variable selection and relevance, and the scikit-learn and Keras libraries were used for the learning, training, and validation stage. Five ANN are proposed to estimate the CBR value, obtaining an error of 4.47% in the validation stage. It can be concluded that this method is effective and valid to determine the CBR value in subgrades and granular bases of any pavement for its evaluation or design.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"399 7","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the California Bearing Ratio of the Subgrade and Granular Base Using Artificial Neural Networks\",\"authors\":\"Jose Manuel Palomino Ojeda, Billy Alexis Cayatopa Calderon, Lenin Quiñones Huatangari, Wilmer Rojas Pintado\",\"doi\":\"10.46604/ijeti.2023.11053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the research is to estimate the value of the California bearing ratio (CBR) through the application of ANN. The methodology consists of creating a database with soil index and CBR variables of the subgrades and granular base of pavements in Jaen, Peru, carried out in the soil mechanics laboratories of the city and the National University of Jaen. In addition, the Python library Seaborn is for variable selection and relevance, and the scikit-learn and Keras libraries were used for the learning, training, and validation stage. Five ANN are proposed to estimate the CBR value, obtaining an error of 4.47% in the validation stage. It can be concluded that this method is effective and valid to determine the CBR value in subgrades and granular bases of any pavement for its evaluation or design.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\"399 7\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2023.11053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.11053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过应用人工神经网络来估计加州承载比(CBR)的值。该方法包括创建一个数据库,其中包含秘鲁Jaen市土壤力学实验室和Jaen国立大学进行的路基和路面颗粒基层的土壤指数和CBR变量。此外,Python库Seaborn用于变量选择和相关性,scikit-learn和Keras库用于学习、培训和验证阶段。提出了五种人工神经网络来估计CBR值,在验证阶段获得了4.47%的误差。可以得出结论,该方法对确定任何路面路基和颗粒基层的CBR值进行评估或设计都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of the California Bearing Ratio of the Subgrade and Granular Base Using Artificial Neural Networks
The objective of the research is to estimate the value of the California bearing ratio (CBR) through the application of ANN. The methodology consists of creating a database with soil index and CBR variables of the subgrades and granular base of pavements in Jaen, Peru, carried out in the soil mechanics laboratories of the city and the National University of Jaen. In addition, the Python library Seaborn is for variable selection and relevance, and the scikit-learn and Keras libraries were used for the learning, training, and validation stage. Five ANN are proposed to estimate the CBR value, obtaining an error of 4.47% in the validation stage. It can be concluded that this method is effective and valid to determine the CBR value in subgrades and granular bases of any pavement for its evaluation or design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
A Study on the Vehicle Routing Problem Considering Infeasible Routing Based on the Improved Genetic Algorithm Prediction of Distribution Network Line Loss Rate Based on Ensemble Learning Optimization of SM4 Encryption Algorithm for Power Metering Data Transmission Finite Element Analysis of a Novel Tensegrity-Based Vibratory Platform Simulation and Measurement Analysis of an Integrated Flow Battery Energy-Storage System with Hybrid Wind/Wave Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1