{"title":"表面处理二氧化硅填充和非填充聚二甲基硅氧烷薄膜的表征","authors":"Michael Joyce, P. D. Fleming, A. Pekarovicova","doi":"10.1504/IJSURFSE.2017.084659","DOIUrl":null,"url":null,"abstract":"In this work, various methods to enable tailoring of polydimethylsiloxane film surfaces are implemented and compared to determine their influence on surface energy and roughness. Films were prepared containing various levels of hydrophilic silica filler. Ultraviolet-ozone, and Piranha solution treatments were also implemented and characterised. Lastly, the combination of both silica filler and treatments were utilised and characterised to understand interactive effects. Influence of filler loading, and surface treatment on roughness, and surface energy of films was determined. Regardless of surface treatment, addition of silica significantly influences total surface energy. Addition of silica influenced total surface energy of the films by itself, and in combination with the Piranha and UV-ozone treatments. The lowest surface energy was that of the control Polydimethylsiloxane film 21.5 N/m. The overall highest surface energy achieved was that of the 10% filled 30-minute Piranha solution treated sample, having a surface energy of 44.1 N/m.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":"125 3","pages":"133-147"},"PeriodicalIF":1.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJSURFSE.2017.084659","citationCount":"2","resultStr":"{\"title\":\"The characterisation of surface treated silica-filled and non-filled polydimethylsiloxane films\",\"authors\":\"Michael Joyce, P. D. Fleming, A. Pekarovicova\",\"doi\":\"10.1504/IJSURFSE.2017.084659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, various methods to enable tailoring of polydimethylsiloxane film surfaces are implemented and compared to determine their influence on surface energy and roughness. Films were prepared containing various levels of hydrophilic silica filler. Ultraviolet-ozone, and Piranha solution treatments were also implemented and characterised. Lastly, the combination of both silica filler and treatments were utilised and characterised to understand interactive effects. Influence of filler loading, and surface treatment on roughness, and surface energy of films was determined. Regardless of surface treatment, addition of silica significantly influences total surface energy. Addition of silica influenced total surface energy of the films by itself, and in combination with the Piranha and UV-ozone treatments. The lowest surface energy was that of the control Polydimethylsiloxane film 21.5 N/m. The overall highest surface energy achieved was that of the 10% filled 30-minute Piranha solution treated sample, having a surface energy of 44.1 N/m.\",\"PeriodicalId\":14460,\"journal\":{\"name\":\"International Journal of Surface Science and Engineering\",\"volume\":\"125 3\",\"pages\":\"133-147\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJSURFSE.2017.084659\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSURFSE.2017.084659\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/IJSURFSE.2017.084659","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The characterisation of surface treated silica-filled and non-filled polydimethylsiloxane films
In this work, various methods to enable tailoring of polydimethylsiloxane film surfaces are implemented and compared to determine their influence on surface energy and roughness. Films were prepared containing various levels of hydrophilic silica filler. Ultraviolet-ozone, and Piranha solution treatments were also implemented and characterised. Lastly, the combination of both silica filler and treatments were utilised and characterised to understand interactive effects. Influence of filler loading, and surface treatment on roughness, and surface energy of films was determined. Regardless of surface treatment, addition of silica significantly influences total surface energy. Addition of silica influenced total surface energy of the films by itself, and in combination with the Piranha and UV-ozone treatments. The lowest surface energy was that of the control Polydimethylsiloxane film 21.5 N/m. The overall highest surface energy achieved was that of the 10% filled 30-minute Piranha solution treated sample, having a surface energy of 44.1 N/m.
期刊介绍:
IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.