用倾向评分加权回归和双机器学习估计治疗效果

Jun Xue, Wei Zhong Goh, Dana Rotz
{"title":"用倾向评分加权回归和双机器学习估计治疗效果","authors":"Jun Xue, Wei Zhong Goh, Dana Rotz","doi":"10.1353/obs.2023.0028","DOIUrl":null,"url":null,"abstract":"Abstract:We applied propensity score weighted regression and double machine learning in the 2022 American Causal Inference Conference Data Challenge. Our double machine learning method achieved the second lowest overall RMSE among all official submissions, but performed less well on heterogeneous treatment effect estimation due to lack of regularization.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Treatment Effect with Propensity Score Weighted Regression and Double Machine Learning\",\"authors\":\"Jun Xue, Wei Zhong Goh, Dana Rotz\",\"doi\":\"10.1353/obs.2023.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:We applied propensity score weighted regression and double machine learning in the 2022 American Causal Inference Conference Data Challenge. Our double machine learning method achieved the second lowest overall RMSE among all official submissions, but performed less well on heterogeneous treatment effect estimation due to lack of regularization.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2023.0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:我们在2022年美国因果推理会议数据挑战赛中应用了倾向得分加权回归和双机器学习。我们的双机器学习方法在所有官方提交的报告中获得了第二低的总体RMSE,但由于缺乏正则化,在异构治疗效果估计上表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating Treatment Effect with Propensity Score Weighted Regression and Double Machine Learning
Abstract:We applied propensity score weighted regression and double machine learning in the 2022 American Causal Inference Conference Data Challenge. Our double machine learning method achieved the second lowest overall RMSE among all official submissions, but performed less well on heterogeneous treatment effect estimation due to lack of regularization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Does matching introduce confounding or selection bias into the matched case-control design? Size-biased sensitivity analysis for matched pairs design to assess the impact of healthcare-associated infections A Software Tutorial for Matching in Clustered Observational Studies Using a difference-in-difference control trial to test an intervention aimed at increasing the take-up of a welfare payment in New Zealand Estimating Treatment Effect with Propensity Score Weighted Regression and Double Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1