中低应变速率下ABS聚合物的力学特性

Suhail Hyder Vattathurvalappil, S. Hassan, M. Haq
{"title":"中低应变速率下ABS聚合物的力学特性","authors":"Suhail Hyder Vattathurvalappil, S. Hassan, M. Haq","doi":"10.21926/rpm.2301012","DOIUrl":null,"url":null,"abstract":"Thermoplastics polymers like Acrylonitrile Butadiene Styrene (ABS) are often reinforced with nano/micro reinforcements to enhance their mechanical, thermal and electrical properties. However, the viscoelastic nature of these polymers results in their strong dependence on the applied strain rate and temperature sensitivity, leading to their characterization complexity. Hence it is paramount to study the strain rate-dependent mechanics of neat ABS. In this study, the effect of strain rate and temperature on Young’s modulus of ABS polymer was characterized using a dynamic mechanical analyzer (DMA). Storage modulus curves at various temperatures and frequencies were transformed into a representative master curve at a specific temperature using the time-temperature superposition (TTS) principle. Based on this curve‘s storage modulus and frequency relation, an empirical fit function was developed and the strain rate values were extrapolated. Using integral relations of viscoelasticity, the results were further transformed to a time domain relaxation function to extract the strain rate-sensitive Young’s modulus at different loading rates. This method was validated by comparing the data with tensile tests conducted on ABS coupons as per ASTM D638-14. The results were acceptable over a wide range of strain rates and indicated a clear sensitivity of ABS to strain rate and temperature. The strategy used in this work can be employed to study the effect of reinforcement morphology in ABS thermoplastics using DMA.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":"19 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanics of ABS Polymer under Low & Intermediate Strain Rates\",\"authors\":\"Suhail Hyder Vattathurvalappil, S. Hassan, M. Haq\",\"doi\":\"10.21926/rpm.2301012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoplastics polymers like Acrylonitrile Butadiene Styrene (ABS) are often reinforced with nano/micro reinforcements to enhance their mechanical, thermal and electrical properties. However, the viscoelastic nature of these polymers results in their strong dependence on the applied strain rate and temperature sensitivity, leading to their characterization complexity. Hence it is paramount to study the strain rate-dependent mechanics of neat ABS. In this study, the effect of strain rate and temperature on Young’s modulus of ABS polymer was characterized using a dynamic mechanical analyzer (DMA). Storage modulus curves at various temperatures and frequencies were transformed into a representative master curve at a specific temperature using the time-temperature superposition (TTS) principle. Based on this curve‘s storage modulus and frequency relation, an empirical fit function was developed and the strain rate values were extrapolated. Using integral relations of viscoelasticity, the results were further transformed to a time domain relaxation function to extract the strain rate-sensitive Young’s modulus at different loading rates. This method was validated by comparing the data with tensile tests conducted on ABS coupons as per ASTM D638-14. The results were acceptable over a wide range of strain rates and indicated a clear sensitivity of ABS to strain rate and temperature. The strategy used in this work can be employed to study the effect of reinforcement morphology in ABS thermoplastics using DMA.\",\"PeriodicalId\":87352,\"journal\":{\"name\":\"Recent progress in materials\",\"volume\":\"19 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/rpm.2301012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2301012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

丙烯腈-丁二烯-苯乙烯(ABS)等热塑性聚合物通常用纳米/微米增强材料增强,以增强其机械、热和电学性能。然而,这些聚合物的粘弹性性质导致它们强烈依赖于施加的应变速率和温度敏感性,从而导致它们的表征复杂性。因此,研究纯ABS的应变速率相关力学至关重要。本研究采用动态力学分析仪(DMA)表征了应变速率和温度对ABS聚合物杨氏模量的影响。使用时间-温度叠加(TTS)原理将不同温度和频率下的储能模量曲线转换为特定温度下的代表性主曲线。基于该曲线的储能模量和频率关系,建立了经验拟合函数,并外推了应变速率值。利用粘弹性的积分关系,将结果进一步转换为时域弛豫函数,以提取不同加载速率下对应变速率敏感的杨氏模量。通过将数据与根据ASTM D638-14在ABS试片上进行的拉伸试验进行比较来验证该方法。结果在宽的应变速率范围内是可接受的,并表明ABS对应变速率和温度具有明显的敏感性。本工作中使用的策略可用于研究DMA对ABS热塑性塑料中增强形态的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanics of ABS Polymer under Low & Intermediate Strain Rates
Thermoplastics polymers like Acrylonitrile Butadiene Styrene (ABS) are often reinforced with nano/micro reinforcements to enhance their mechanical, thermal and electrical properties. However, the viscoelastic nature of these polymers results in their strong dependence on the applied strain rate and temperature sensitivity, leading to their characterization complexity. Hence it is paramount to study the strain rate-dependent mechanics of neat ABS. In this study, the effect of strain rate and temperature on Young’s modulus of ABS polymer was characterized using a dynamic mechanical analyzer (DMA). Storage modulus curves at various temperatures and frequencies were transformed into a representative master curve at a specific temperature using the time-temperature superposition (TTS) principle. Based on this curve‘s storage modulus and frequency relation, an empirical fit function was developed and the strain rate values were extrapolated. Using integral relations of viscoelasticity, the results were further transformed to a time domain relaxation function to extract the strain rate-sensitive Young’s modulus at different loading rates. This method was validated by comparing the data with tensile tests conducted on ABS coupons as per ASTM D638-14. The results were acceptable over a wide range of strain rates and indicated a clear sensitivity of ABS to strain rate and temperature. The strategy used in this work can be employed to study the effect of reinforcement morphology in ABS thermoplastics using DMA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sustainable Concrete with Zero Carbon Footprint Construction and Evaluation of a Modular Anthropomorphic Phantom of the Skull with an Exchangeable Specimen Jar to Optimize the Radiological Examination of Temporal Bone Pathology Impact of Pernicious Chemicals on Geopolymer and Alkali-Activated Composites Incorporated with Different Fiber Types: A Review Spark Plasma Sintering of Cu-Ti-Ni Ternary Alloy: Microstructural, Thermal and Electrical Properties Spin Entanglement – A Unifying Principle for Superconductors and Molecular Bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1