N. Santitissadeekorn, C. Meile, E. Bollt, G. Waldbusser
{"title":"基于图像的运动估计中促进发散自由流的参数方法及其在生物灌溉中的应用","authors":"N. Santitissadeekorn, C. Meile, E. Bollt, G. Waldbusser","doi":"10.1017/s095679252200016x","DOIUrl":null,"url":null,"abstract":"Flow fields are determined from image sequences obtained in an experiment in which benthic macrofauna, Arenicola marina, causes water flow and the images depict the distribution of a tracer that is carried with the flow. The experimental setup is such that flow is largely two-dimensional, with a localised region where the Arenicola resides, from which flow originates. Here, we propose a novel parametric framework that quantifies such flow that is dominant along the image plane. We adopt a Bayesian framework so that we can impart certain physical constraints on parameters into the estimation process via prior distribution. The primary aim is to approximate the mean of the posterior distribution to present the parameter estimate via Markov Chain Monte Carlo. We demonstrate that the results obtained from the proposed method provide more realistic flows (in terms of divergence magnitude) than those computed from classical approaches such as the multi-resolution Horn–Schunk method. This highlights the usefulness of our approach if motion is largely constrained to the image plane with localised fluid sources.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric approach to promote a divergence-free flow in the image-based motion estimation with application to bioirrigation\",\"authors\":\"N. Santitissadeekorn, C. Meile, E. Bollt, G. Waldbusser\",\"doi\":\"10.1017/s095679252200016x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow fields are determined from image sequences obtained in an experiment in which benthic macrofauna, Arenicola marina, causes water flow and the images depict the distribution of a tracer that is carried with the flow. The experimental setup is such that flow is largely two-dimensional, with a localised region where the Arenicola resides, from which flow originates. Here, we propose a novel parametric framework that quantifies such flow that is dominant along the image plane. We adopt a Bayesian framework so that we can impart certain physical constraints on parameters into the estimation process via prior distribution. The primary aim is to approximate the mean of the posterior distribution to present the parameter estimate via Markov Chain Monte Carlo. We demonstrate that the results obtained from the proposed method provide more realistic flows (in terms of divergence magnitude) than those computed from classical approaches such as the multi-resolution Horn–Schunk method. This highlights the usefulness of our approach if motion is largely constrained to the image plane with localised fluid sources.\",\"PeriodicalId\":51046,\"journal\":{\"name\":\"European Journal of Applied Mathematics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s095679252200016x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s095679252200016x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Parametric approach to promote a divergence-free flow in the image-based motion estimation with application to bioirrigation
Flow fields are determined from image sequences obtained in an experiment in which benthic macrofauna, Arenicola marina, causes water flow and the images depict the distribution of a tracer that is carried with the flow. The experimental setup is such that flow is largely two-dimensional, with a localised region where the Arenicola resides, from which flow originates. Here, we propose a novel parametric framework that quantifies such flow that is dominant along the image plane. We adopt a Bayesian framework so that we can impart certain physical constraints on parameters into the estimation process via prior distribution. The primary aim is to approximate the mean of the posterior distribution to present the parameter estimate via Markov Chain Monte Carlo. We demonstrate that the results obtained from the proposed method provide more realistic flows (in terms of divergence magnitude) than those computed from classical approaches such as the multi-resolution Horn–Schunk method. This highlights the usefulness of our approach if motion is largely constrained to the image plane with localised fluid sources.
期刊介绍:
Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.