B. Narhari, Bakwad Kamlakar Murlidhar, A. Sayyad, G. Sable
{"title":"基于优化阈值血管分割和混合分类器的糖尿病视网膜病变自动诊断","authors":"B. Narhari, Bakwad Kamlakar Murlidhar, A. Sayyad, G. Sable","doi":"10.1515/bams-2020-0053","DOIUrl":null,"url":null,"abstract":"Abstract Objectives The focus of this paper is to introduce an automated early Diabetic Retinopathy (DR) detection scheme from colour fundus images through enhanced segmentation and classification strategies by analyzing blood vessels. Methods The occurrence of DR is increasing from the past years, impacting the eyes due to a sudden rise in the glucose level of blood. All over the world, half of the people who are under age 70 are severely suffered from diabetes. The patients who are affected by DR will lose their vision during the absence of early recognition of DR and appropriate treatment. To decrease the growth and occurrence of loss of vision, the early detection and timely treatment of DR are desirable. At present, deep learning models have presented better performance using retinal images for DR detection. In this work, the input retinal fundus images are initially subjected to pre-processing that undergoes contrast enhancement by Contrast Limited Adaptive Histogram Equalization (CLAHE) and average filtering. Further, the optimized binary thresholding-based segmentation is done for blood vessel segmentation. For the segmented image, Tri-level Discrete Level Decomposition (Tri-DWT) is performed to decompose it. In the feature extraction phase, Local Binary Pattern (LBP), and Gray-Level Co-occurrence Matrices (GLCMs) are extracted. Next, the classification of images is done through the combination of two algorithms, one is Neural Network (NN), and the other Convolutional Neural Network (CNN). The extracted features are subjected to NN, and the tri-DWT-based segmented image is subjected to CNN. Both the segmentation and classification phases are enhanced by the improved meta-heuristic algorithm called Fitness Rate-based Crow Search Algorithm (FR-CSA), in which few parameters are optimized for attaining maximum detection accuracy. Results The proposed DR detection model was implemented in MATLAB 2018a, and the analysis was done using three datasets, HRF, Messidor, and DIARETDB. Conclusions The developed FR-CSA algorithm has the best detection accuracy in diagnosing DR.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":"17 1","pages":"9 - 23"},"PeriodicalIF":1.2000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bams-2020-0053","citationCount":"2","resultStr":"{\"title\":\"Automated diagnosis of diabetic retinopathy enabled by optimized thresholding-based blood vessel segmentation and hybrid classifier\",\"authors\":\"B. Narhari, Bakwad Kamlakar Murlidhar, A. Sayyad, G. Sable\",\"doi\":\"10.1515/bams-2020-0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives The focus of this paper is to introduce an automated early Diabetic Retinopathy (DR) detection scheme from colour fundus images through enhanced segmentation and classification strategies by analyzing blood vessels. Methods The occurrence of DR is increasing from the past years, impacting the eyes due to a sudden rise in the glucose level of blood. All over the world, half of the people who are under age 70 are severely suffered from diabetes. The patients who are affected by DR will lose their vision during the absence of early recognition of DR and appropriate treatment. To decrease the growth and occurrence of loss of vision, the early detection and timely treatment of DR are desirable. At present, deep learning models have presented better performance using retinal images for DR detection. In this work, the input retinal fundus images are initially subjected to pre-processing that undergoes contrast enhancement by Contrast Limited Adaptive Histogram Equalization (CLAHE) and average filtering. Further, the optimized binary thresholding-based segmentation is done for blood vessel segmentation. For the segmented image, Tri-level Discrete Level Decomposition (Tri-DWT) is performed to decompose it. In the feature extraction phase, Local Binary Pattern (LBP), and Gray-Level Co-occurrence Matrices (GLCMs) are extracted. Next, the classification of images is done through the combination of two algorithms, one is Neural Network (NN), and the other Convolutional Neural Network (CNN). The extracted features are subjected to NN, and the tri-DWT-based segmented image is subjected to CNN. Both the segmentation and classification phases are enhanced by the improved meta-heuristic algorithm called Fitness Rate-based Crow Search Algorithm (FR-CSA), in which few parameters are optimized for attaining maximum detection accuracy. Results The proposed DR detection model was implemented in MATLAB 2018a, and the analysis was done using three datasets, HRF, Messidor, and DIARETDB. Conclusions The developed FR-CSA algorithm has the best detection accuracy in diagnosing DR.\",\"PeriodicalId\":42620,\"journal\":{\"name\":\"Bio-Algorithms and Med-Systems\",\"volume\":\"17 1\",\"pages\":\"9 - 23\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bams-2020-0053\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Algorithms and Med-Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bams-2020-0053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2020-0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Automated diagnosis of diabetic retinopathy enabled by optimized thresholding-based blood vessel segmentation and hybrid classifier
Abstract Objectives The focus of this paper is to introduce an automated early Diabetic Retinopathy (DR) detection scheme from colour fundus images through enhanced segmentation and classification strategies by analyzing blood vessels. Methods The occurrence of DR is increasing from the past years, impacting the eyes due to a sudden rise in the glucose level of blood. All over the world, half of the people who are under age 70 are severely suffered from diabetes. The patients who are affected by DR will lose their vision during the absence of early recognition of DR and appropriate treatment. To decrease the growth and occurrence of loss of vision, the early detection and timely treatment of DR are desirable. At present, deep learning models have presented better performance using retinal images for DR detection. In this work, the input retinal fundus images are initially subjected to pre-processing that undergoes contrast enhancement by Contrast Limited Adaptive Histogram Equalization (CLAHE) and average filtering. Further, the optimized binary thresholding-based segmentation is done for blood vessel segmentation. For the segmented image, Tri-level Discrete Level Decomposition (Tri-DWT) is performed to decompose it. In the feature extraction phase, Local Binary Pattern (LBP), and Gray-Level Co-occurrence Matrices (GLCMs) are extracted. Next, the classification of images is done through the combination of two algorithms, one is Neural Network (NN), and the other Convolutional Neural Network (CNN). The extracted features are subjected to NN, and the tri-DWT-based segmented image is subjected to CNN. Both the segmentation and classification phases are enhanced by the improved meta-heuristic algorithm called Fitness Rate-based Crow Search Algorithm (FR-CSA), in which few parameters are optimized for attaining maximum detection accuracy. Results The proposed DR detection model was implemented in MATLAB 2018a, and the analysis was done using three datasets, HRF, Messidor, and DIARETDB. Conclusions The developed FR-CSA algorithm has the best detection accuracy in diagnosing DR.
期刊介绍:
The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.