电动汽车快速充电站服务质量评价:一种新的不确定评价模型

IF 3.6 2区 工程技术 Q2 TRANSPORTATION Transportmetrica A-Transport Science Pub Date : 2025-01-02 DOI:10.1080/23249935.2023.2232044
Zhonghao Zhao , Carman K.M. Lee , Jingzheng Ren , Yungpo Tsang
{"title":"电动汽车快速充电站服务质量评价:一种新的不确定评价模型","authors":"Zhonghao Zhao ,&nbsp;Carman K.M. Lee ,&nbsp;Jingzheng Ren ,&nbsp;Yungpo Tsang","doi":"10.1080/23249935.2023.2232044","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the quality of service (QoS) evaluation problem for electric vehicle (EV) fast charging stations (FCSs). With the increasing market penetration of EVs, effective service quality evaluation under different charging scenarios is a pressing and open issue for planning FCSs to accommodate non-stationary customer charging demand. Unlike previous studies, we make the first attempt to define the connotation of QoS from the EV customers' standpoint based on an extended universal generating function (EUGF). First, we formulate the charging behaviour as a fuzzy queuing process, where the arrival rate and service rate are modelled as fuzzy numbers. Second, the QoS requirement level is taken into account to better reflect the real charging environment. The model is then extended to incorporate the charging station structure by introducing the concept of the composition operator. Finally, numerical experiments are conducted to examine the performance of the EUGF-based model. The results demonstrate that the proposed approach is able to obtain a realistic and precise QoS evaluation, and can serve as an effective indicator for FCS planning and operation problems.</div></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"21 1","pages":"Pages 227-246"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality of service measurement for electric vehicle fast charging stations: a new evaluation model under uncertainties\",\"authors\":\"Zhonghao Zhao ,&nbsp;Carman K.M. Lee ,&nbsp;Jingzheng Ren ,&nbsp;Yungpo Tsang\",\"doi\":\"10.1080/23249935.2023.2232044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the quality of service (QoS) evaluation problem for electric vehicle (EV) fast charging stations (FCSs). With the increasing market penetration of EVs, effective service quality evaluation under different charging scenarios is a pressing and open issue for planning FCSs to accommodate non-stationary customer charging demand. Unlike previous studies, we make the first attempt to define the connotation of QoS from the EV customers' standpoint based on an extended universal generating function (EUGF). First, we formulate the charging behaviour as a fuzzy queuing process, where the arrival rate and service rate are modelled as fuzzy numbers. Second, the QoS requirement level is taken into account to better reflect the real charging environment. The model is then extended to incorporate the charging station structure by introducing the concept of the composition operator. Finally, numerical experiments are conducted to examine the performance of the EUGF-based model. The results demonstrate that the proposed approach is able to obtain a realistic and precise QoS evaluation, and can serve as an effective indicator for FCS planning and operation problems.</div></div>\",\"PeriodicalId\":48871,\"journal\":{\"name\":\"Transportmetrica A-Transport Science\",\"volume\":\"21 1\",\"pages\":\"Pages 227-246\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica A-Transport Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2324993523001872\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993523001872","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality of service measurement for electric vehicle fast charging stations: a new evaluation model under uncertainties
This study addresses the quality of service (QoS) evaluation problem for electric vehicle (EV) fast charging stations (FCSs). With the increasing market penetration of EVs, effective service quality evaluation under different charging scenarios is a pressing and open issue for planning FCSs to accommodate non-stationary customer charging demand. Unlike previous studies, we make the first attempt to define the connotation of QoS from the EV customers' standpoint based on an extended universal generating function (EUGF). First, we formulate the charging behaviour as a fuzzy queuing process, where the arrival rate and service rate are modelled as fuzzy numbers. Second, the QoS requirement level is taken into account to better reflect the real charging environment. The model is then extended to incorporate the charging station structure by introducing the concept of the composition operator. Finally, numerical experiments are conducted to examine the performance of the EUGF-based model. The results demonstrate that the proposed approach is able to obtain a realistic and precise QoS evaluation, and can serve as an effective indicator for FCS planning and operation problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportmetrica A-Transport Science
Transportmetrica A-Transport Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
8.10
自引率
12.10%
发文量
55
期刊介绍: Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.
期刊最新文献
Quality of service measurement for electric vehicle fast charging stations: a new evaluation model under uncertainties Estimation of stochastic link capacity and link performance function including uncertainty of driver’s behaviour Traffic efficiency and fairness optimisation for autonomous intersection management based on reinforcement learning A novel hybrid deep learning model with ARIMA Conv-LSTM networks and shuffle attention layer for short-term traffic flow prediction Bimodal transit design with heterogeneous demand elasticity under different fare structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1