{"title":"年轻人下肢肌肉疲劳后体位稳定性与跌倒风险的关系","authors":"M. Safee, N. Osman","doi":"10.4081/hls.2023.11182","DOIUrl":null,"url":null,"abstract":"\nIntroduction: Muscle fatigue can reduce body balance and activity of daily living tasks. Therefore, this study aims to identify the correlation between postural stability and fall risk due to muscle fatigue. The components in postural stability include Overall Stability Index (OSI), Anterior-Posterior Stability Index (APSI), and Mediolateral Stability Index (MLSI). \n \n \nDesign and Methods: A total of seven healthy adults aged 31.1±7.4 years were recruited in this study. The sit-to-stand (STS) protocol was used to induce lower limb muscle fatigue, while postural stability and fall risk were assessed using the Biodex Balance System (BBS) before and after muscle fatigue. \n \n \nResult: The result showed a significant increase in postural stability index after fatigue only for OSI with p<0.05, while no significant difference was found on APSI and MLSI with p=0.157 and p=0.109 respectively. However, the mean score for the postural stability index showed an increase in percentage with 47.8% in OSI, 26.3% in APSI and 46.8% in MLSI. Furthermore,fall risk showed no significant differences with p=0.149, but the mean score data increased by 16.7% after fatigue. The correlation between fall risk and OSI was significant with p<0.05, while MLSI had a significant negative correlation with APSI (p<0.05). \n \n \nConclusions: Based on the results, the young adults had reduced overall postural stability but were less affected by fall risk after muscle fatigue. The positive correlation between OSI and fall risk indicated that their overall postural stability can induce the fall risk after muscle fatigue. Therefore, young adults need to be aware of their fatigue symptoms during prolonged exercise that can increase fall risk potential. \n","PeriodicalId":30412,"journal":{"name":"Healthcare in Lowresource Settings","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relationship between postural stability and fall risk in young adult after lower limb muscle fatigue\",\"authors\":\"M. Safee, N. Osman\",\"doi\":\"10.4081/hls.2023.11182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nIntroduction: Muscle fatigue can reduce body balance and activity of daily living tasks. Therefore, this study aims to identify the correlation between postural stability and fall risk due to muscle fatigue. The components in postural stability include Overall Stability Index (OSI), Anterior-Posterior Stability Index (APSI), and Mediolateral Stability Index (MLSI). \\n \\n \\nDesign and Methods: A total of seven healthy adults aged 31.1±7.4 years were recruited in this study. The sit-to-stand (STS) protocol was used to induce lower limb muscle fatigue, while postural stability and fall risk were assessed using the Biodex Balance System (BBS) before and after muscle fatigue. \\n \\n \\nResult: The result showed a significant increase in postural stability index after fatigue only for OSI with p<0.05, while no significant difference was found on APSI and MLSI with p=0.157 and p=0.109 respectively. However, the mean score for the postural stability index showed an increase in percentage with 47.8% in OSI, 26.3% in APSI and 46.8% in MLSI. Furthermore,fall risk showed no significant differences with p=0.149, but the mean score data increased by 16.7% after fatigue. The correlation between fall risk and OSI was significant with p<0.05, while MLSI had a significant negative correlation with APSI (p<0.05). \\n \\n \\nConclusions: Based on the results, the young adults had reduced overall postural stability but were less affected by fall risk after muscle fatigue. The positive correlation between OSI and fall risk indicated that their overall postural stability can induce the fall risk after muscle fatigue. Therefore, young adults need to be aware of their fatigue symptoms during prolonged exercise that can increase fall risk potential. \\n\",\"PeriodicalId\":30412,\"journal\":{\"name\":\"Healthcare in Lowresource Settings\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare in Lowresource Settings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/hls.2023.11182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare in Lowresource Settings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/hls.2023.11182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Relationship between postural stability and fall risk in young adult after lower limb muscle fatigue
Introduction: Muscle fatigue can reduce body balance and activity of daily living tasks. Therefore, this study aims to identify the correlation between postural stability and fall risk due to muscle fatigue. The components in postural stability include Overall Stability Index (OSI), Anterior-Posterior Stability Index (APSI), and Mediolateral Stability Index (MLSI).
Design and Methods: A total of seven healthy adults aged 31.1±7.4 years were recruited in this study. The sit-to-stand (STS) protocol was used to induce lower limb muscle fatigue, while postural stability and fall risk were assessed using the Biodex Balance System (BBS) before and after muscle fatigue.
Result: The result showed a significant increase in postural stability index after fatigue only for OSI with p<0.05, while no significant difference was found on APSI and MLSI with p=0.157 and p=0.109 respectively. However, the mean score for the postural stability index showed an increase in percentage with 47.8% in OSI, 26.3% in APSI and 46.8% in MLSI. Furthermore,fall risk showed no significant differences with p=0.149, but the mean score data increased by 16.7% after fatigue. The correlation between fall risk and OSI was significant with p<0.05, while MLSI had a significant negative correlation with APSI (p<0.05).
Conclusions: Based on the results, the young adults had reduced overall postural stability but were less affected by fall risk after muscle fatigue. The positive correlation between OSI and fall risk indicated that their overall postural stability can induce the fall risk after muscle fatigue. Therefore, young adults need to be aware of their fatigue symptoms during prolonged exercise that can increase fall risk potential.