{"title":"确定新型电子材料的电子、结构、介电、磁性和输运性质:使用第一性原理技术","authors":"W. Vandenberghe","doi":"10.1109/mnano.2021.3113223","DOIUrl":null,"url":null,"abstract":"Nanotechnology enables the use of rare elements in commercial electronic applications, vastly increasing the number of possibly useful materials. To focus experimental efforts onto a selected set of the most promising materials, theoretical guidance starting from first principles is indispensable. We present an overview of how the electronic, structural, dielectric, magnetic, and transport properties of novel electronic materials can be predicted from first principles. We give a basic overview of the computational process and the computational expense to predict each of the aforementioned properties. We illustrate the application of the different techniques using various 2D materials.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"15 1","pages":"68-C3"},"PeriodicalIF":2.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determining Electronic, Structural, Dielectric, Magnetic, and Transport Properties in Novel Electronic Materials: Using first-principles techniques\",\"authors\":\"W. Vandenberghe\",\"doi\":\"10.1109/mnano.2021.3113223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology enables the use of rare elements in commercial electronic applications, vastly increasing the number of possibly useful materials. To focus experimental efforts onto a selected set of the most promising materials, theoretical guidance starting from first principles is indispensable. We present an overview of how the electronic, structural, dielectric, magnetic, and transport properties of novel electronic materials can be predicted from first principles. We give a basic overview of the computational process and the computational expense to predict each of the aforementioned properties. We illustrate the application of the different techniques using various 2D materials.\",\"PeriodicalId\":44724,\"journal\":{\"name\":\"IEEE Nanotechnology Magazine\",\"volume\":\"15 1\",\"pages\":\"68-C3\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nanotechnology Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mnano.2021.3113223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mnano.2021.3113223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Determining Electronic, Structural, Dielectric, Magnetic, and Transport Properties in Novel Electronic Materials: Using first-principles techniques
Nanotechnology enables the use of rare elements in commercial electronic applications, vastly increasing the number of possibly useful materials. To focus experimental efforts onto a selected set of the most promising materials, theoretical guidance starting from first principles is indispensable. We present an overview of how the electronic, structural, dielectric, magnetic, and transport properties of novel electronic materials can be predicted from first principles. We give a basic overview of the computational process and the computational expense to predict each of the aforementioned properties. We illustrate the application of the different techniques using various 2D materials.
期刊介绍:
IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.