建立一个体外模型来估计前腔的质量转移

Tianyang Liu, Nkiruka Ibeanu, S. Brocchini, P. Khaw, Y. Bouremel, S. Awwad
{"title":"建立一个体外模型来估计前腔的质量转移","authors":"Tianyang Liu, Nkiruka Ibeanu, S. Brocchini, P. Khaw, Y. Bouremel, S. Awwad","doi":"10.3389/fddev.2022.1025029","DOIUrl":null,"url":null,"abstract":"Knowledge of drug mass transfer from the anterior chamber via the iris-lens barrier has important implications for the development of front of the eye medicines that can also deliver drugs to the vitreous cavity. Here, the design and evaluation of a novel in vitro model that estimates anterior clearance (CL) kinetics is described. To mimic some aspects of the human eye to aid with pharmaceutical modelling, the model incorporated a simulation of aqueous inflow from the ciliary inlet at the physiological flow rate, two CL elimination pathways [anterior hyaloid pathway and retina choroid sclera (RCS) pathway], human cavity dimensions and use of simulated vitreous fluid (SVF). An eye movement platform that incorporated 3 different eye movements (smooth pursuit, microsaccadic and saccadic) was tested against the control (no movement) to observe any difference in anterior kinetics profile and drug convection to the posterior cavity. Both timolol and brimonidine injected in the intracameral space were evaluated in the new in vitro prototype. An initial release study with one selected eye movement (smooth pursuit) with timolol (6.8 ± 0.4 µg, 30 μL) and brimonidine (15.3 ± 1.5 µg, 30 μL) showed half-life values of 105.3 and 97.8 min respectively in the anterior cavity (AC) space. Another study evaluated the effect of all eye movements against control with both drugs with higher doses of timolol (146.0 ± 39.1 μg, 25 μL) and brimonidine (134.5 ± 39.5 μg, 25 μL). The amounts of timolol in the back of the eye (RCS membrane and outflow) were 0.07 ± 0.05%, 1.36 ± 0.88%, 1.55 ± 1.03% and 0.98 ± 0.06% by 8 h with smooth pursuit, microsaccadic, saccadic and no movement respectively; whereas brimonidine amounts were 0.70 ± 0.21%, 0.94 ± 0.40%, 1.48 ± 1.02%, and 0.76 ± 0.33% respectively. A small amount of both drugs was seen in other compartments in the model (lens part, iris part, hyaloid membrane part and silicone cornea). These results indicate that this model can be used to determine transfer of small molecules via the iris-lens barrier to help optimise front of the eye formulations to treat tissues further back in the eye.","PeriodicalId":73079,"journal":{"name":"Frontiers in drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of an in vitro model to estimate mass transfer from the anterior cavity\",\"authors\":\"Tianyang Liu, Nkiruka Ibeanu, S. Brocchini, P. Khaw, Y. Bouremel, S. Awwad\",\"doi\":\"10.3389/fddev.2022.1025029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge of drug mass transfer from the anterior chamber via the iris-lens barrier has important implications for the development of front of the eye medicines that can also deliver drugs to the vitreous cavity. Here, the design and evaluation of a novel in vitro model that estimates anterior clearance (CL) kinetics is described. To mimic some aspects of the human eye to aid with pharmaceutical modelling, the model incorporated a simulation of aqueous inflow from the ciliary inlet at the physiological flow rate, two CL elimination pathways [anterior hyaloid pathway and retina choroid sclera (RCS) pathway], human cavity dimensions and use of simulated vitreous fluid (SVF). An eye movement platform that incorporated 3 different eye movements (smooth pursuit, microsaccadic and saccadic) was tested against the control (no movement) to observe any difference in anterior kinetics profile and drug convection to the posterior cavity. Both timolol and brimonidine injected in the intracameral space were evaluated in the new in vitro prototype. An initial release study with one selected eye movement (smooth pursuit) with timolol (6.8 ± 0.4 µg, 30 μL) and brimonidine (15.3 ± 1.5 µg, 30 μL) showed half-life values of 105.3 and 97.8 min respectively in the anterior cavity (AC) space. Another study evaluated the effect of all eye movements against control with both drugs with higher doses of timolol (146.0 ± 39.1 μg, 25 μL) and brimonidine (134.5 ± 39.5 μg, 25 μL). The amounts of timolol in the back of the eye (RCS membrane and outflow) were 0.07 ± 0.05%, 1.36 ± 0.88%, 1.55 ± 1.03% and 0.98 ± 0.06% by 8 h with smooth pursuit, microsaccadic, saccadic and no movement respectively; whereas brimonidine amounts were 0.70 ± 0.21%, 0.94 ± 0.40%, 1.48 ± 1.02%, and 0.76 ± 0.33% respectively. A small amount of both drugs was seen in other compartments in the model (lens part, iris part, hyaloid membrane part and silicone cornea). These results indicate that this model can be used to determine transfer of small molecules via the iris-lens barrier to help optimise front of the eye formulations to treat tissues further back in the eye.\",\"PeriodicalId\":73079,\"journal\":{\"name\":\"Frontiers in drug delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fddev.2022.1025029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddev.2022.1025029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

药物通过虹膜-晶状体屏障从前房转移的知识对开发也可以将药物输送到玻璃体腔的眼前药物具有重要意义。在此,描述了一种新的体外模型的设计和评估,该模型用于估计前间隙(CL)动力学。为了模拟人眼的某些方面以帮助药物建模,该模型结合了以生理流速模拟睫状体入口的水流入、两种CL消除途径[前玻璃体途径和视网膜-脉络膜-巩膜(RCS)途径]、人腔尺寸和模拟玻璃体液(SVF)的使用。将包含3种不同眼球运动(平稳追踪、微扫视和扫视)的眼球运动平台与对照组(无运动)进行测试,以观察前部动力学曲线和药物对流至后腔的任何差异。在新的体外原型中评估了房内注射噻吗洛尔和溴莫尼定。一项用噻吗洛尔(6.8±0.4µg,30μL)和溴莫尼定(15.3±1.5µg,20μL)进行的选择性眼动(平稳追踪)的初次释放研究显示,在前房(AC)空间的半衰期值分别为105.3和97.8分钟。另一项研究评估了高剂量噻吗洛尔(146.0±39.1μg,25μL)和溴莫尼定(134.5±39.5μg,24μL)两种药物对所有眼球运动的影响。到8h时,噻吗洛尔在眼球后部(RCS膜和流出液)的含量分别为0.07±0.05%、1.36±0.88%、1.55±1.03%和0.98±0.06%,且追踪平稳、微跳跃、扫视和无运动;溴莫尼定含量分别为0.70±0.21%、0.94±0.40%、1.48±1.02%和0.76±0.33%。在模型的其他部分(晶状体部分、虹膜部分、透明膜部分和硅胶角膜)可见少量这两种药物。这些结果表明,该模型可用于确定小分子通过虹膜-晶状体屏障的转移,以帮助优化眼前部配方,从而治疗眼睛后面的组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an in vitro model to estimate mass transfer from the anterior cavity
Knowledge of drug mass transfer from the anterior chamber via the iris-lens barrier has important implications for the development of front of the eye medicines that can also deliver drugs to the vitreous cavity. Here, the design and evaluation of a novel in vitro model that estimates anterior clearance (CL) kinetics is described. To mimic some aspects of the human eye to aid with pharmaceutical modelling, the model incorporated a simulation of aqueous inflow from the ciliary inlet at the physiological flow rate, two CL elimination pathways [anterior hyaloid pathway and retina choroid sclera (RCS) pathway], human cavity dimensions and use of simulated vitreous fluid (SVF). An eye movement platform that incorporated 3 different eye movements (smooth pursuit, microsaccadic and saccadic) was tested against the control (no movement) to observe any difference in anterior kinetics profile and drug convection to the posterior cavity. Both timolol and brimonidine injected in the intracameral space were evaluated in the new in vitro prototype. An initial release study with one selected eye movement (smooth pursuit) with timolol (6.8 ± 0.4 µg, 30 μL) and brimonidine (15.3 ± 1.5 µg, 30 μL) showed half-life values of 105.3 and 97.8 min respectively in the anterior cavity (AC) space. Another study evaluated the effect of all eye movements against control with both drugs with higher doses of timolol (146.0 ± 39.1 μg, 25 μL) and brimonidine (134.5 ± 39.5 μg, 25 μL). The amounts of timolol in the back of the eye (RCS membrane and outflow) were 0.07 ± 0.05%, 1.36 ± 0.88%, 1.55 ± 1.03% and 0.98 ± 0.06% by 8 h with smooth pursuit, microsaccadic, saccadic and no movement respectively; whereas brimonidine amounts were 0.70 ± 0.21%, 0.94 ± 0.40%, 1.48 ± 1.02%, and 0.76 ± 0.33% respectively. A small amount of both drugs was seen in other compartments in the model (lens part, iris part, hyaloid membrane part and silicone cornea). These results indicate that this model can be used to determine transfer of small molecules via the iris-lens barrier to help optimise front of the eye formulations to treat tissues further back in the eye.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategies and delivery systems for cell-based therapy in autoimmunity Preliminary results on novel adjuvant combinations suggest enhanced immunogenicity of whole inactivated pandemic influenza vaccines Induction of P-glycoprotein overexpression in brain endothelial cells as a model to study blood-brain barrier efflux transport SpheroMold: modernizing the hanging drop method for spheroid culture 3D-printed weight holders design and testing in mouse models of spinal cord injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1