Leslie Renouard, Christopher Hayworth, Michael Rempe, Will Clegern, Jonathan Wisor, Marcos G. Frank
{"title":"快速眼动睡眠促进体内视觉皮层发育的双向可塑性","authors":"Leslie Renouard, Christopher Hayworth, Michael Rempe, Will Clegern, Jonathan Wisor, Marcos G. Frank","doi":"10.1016/j.nbscr.2022.100076","DOIUrl":null,"url":null,"abstract":"<div><p>Sleep is required for the full expression of plasticity during the visual critical period (CP). However, the precise role of rapid-eye-movement (REM) sleep in this process is undetermined. Previous studies in rodents indicate that REM sleep weakens cortical circuits following MD, but this has been explored in only one class of cortical neuron (layer 5 apical dendrites). We investigated the role of REM sleep in ocular dominance plasticity (ODP) in layer 2/3 neurons using 2-photon calcium imaging in awake CP mice. In contrast to findings in layer 5 neurons, we find that REM sleep promotes changes consistent with synaptic strengthening and weakening. This supports recent suggestions that the effects of sleep on plasticity are highly dependent upon the type of circuit and preceding waking experience.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"12 ","pages":"Article 100076"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451994422000025/pdfft?md5=a341105c82e17f88d8df432da5553a28&pid=1-s2.0-S2451994422000025-main.pdf","citationCount":"7","resultStr":"{\"title\":\"REM sleep promotes bidirectional plasticity in developing visual cortex in vivo\",\"authors\":\"Leslie Renouard, Christopher Hayworth, Michael Rempe, Will Clegern, Jonathan Wisor, Marcos G. Frank\",\"doi\":\"10.1016/j.nbscr.2022.100076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sleep is required for the full expression of plasticity during the visual critical period (CP). However, the precise role of rapid-eye-movement (REM) sleep in this process is undetermined. Previous studies in rodents indicate that REM sleep weakens cortical circuits following MD, but this has been explored in only one class of cortical neuron (layer 5 apical dendrites). We investigated the role of REM sleep in ocular dominance plasticity (ODP) in layer 2/3 neurons using 2-photon calcium imaging in awake CP mice. In contrast to findings in layer 5 neurons, we find that REM sleep promotes changes consistent with synaptic strengthening and weakening. This supports recent suggestions that the effects of sleep on plasticity are highly dependent upon the type of circuit and preceding waking experience.</p></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"12 \",\"pages\":\"Article 100076\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2451994422000025/pdfft?md5=a341105c82e17f88d8df432da5553a28&pid=1-s2.0-S2451994422000025-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994422000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994422000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
REM sleep promotes bidirectional plasticity in developing visual cortex in vivo
Sleep is required for the full expression of plasticity during the visual critical period (CP). However, the precise role of rapid-eye-movement (REM) sleep in this process is undetermined. Previous studies in rodents indicate that REM sleep weakens cortical circuits following MD, but this has been explored in only one class of cortical neuron (layer 5 apical dendrites). We investigated the role of REM sleep in ocular dominance plasticity (ODP) in layer 2/3 neurons using 2-photon calcium imaging in awake CP mice. In contrast to findings in layer 5 neurons, we find that REM sleep promotes changes consistent with synaptic strengthening and weakening. This supports recent suggestions that the effects of sleep on plasticity are highly dependent upon the type of circuit and preceding waking experience.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.