Chaokun Yan, Jingjing Ma, Huimin Luo, Ge Zhang, Junwei Luo
{"title":"基于改进二元克隆花授粉算法的高维生物医学数据特征选择方法","authors":"Chaokun Yan, Jingjing Ma, Huimin Luo, Ge Zhang, Junwei Luo","doi":"10.1159/000501652","DOIUrl":null,"url":null,"abstract":"In the biomedical field, large amounts of biological and clinical data have been accumulated rapidly, which can be analyzed to emphasize the assessment of at-risk patients and improve diagnosis. However, a major challenge encountered associated with biomedical data analysis is the so-called “curse of dimensionality.” For this issue, a novel feature selection method based on an improved binary clonal flower pollination algorithm is proposed to eliminate unnecessary features and ensure a highly accurate classification of disease. The absolute balance group strategy and adaptive Gaussian mutation are adopted, which can increase the diversity of the population and improve the search performance. The KNN classifier is used to evaluate the classification accuracy. Extensive experimental results in six, publicly available, high-dimensional, biomedical datasets show that the proposed method can obtain high classification accuracy and outperforms other state-of-the-art methods.","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":"84 1","pages":"34 - 46"},"PeriodicalIF":1.1000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000501652","citationCount":"21","resultStr":"{\"title\":\"A Novel Feature Selection Method for High-Dimensional Biomedical Data Based on an Improved Binary Clonal Flower Pollination Algorithm\",\"authors\":\"Chaokun Yan, Jingjing Ma, Huimin Luo, Ge Zhang, Junwei Luo\",\"doi\":\"10.1159/000501652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the biomedical field, large amounts of biological and clinical data have been accumulated rapidly, which can be analyzed to emphasize the assessment of at-risk patients and improve diagnosis. However, a major challenge encountered associated with biomedical data analysis is the so-called “curse of dimensionality.” For this issue, a novel feature selection method based on an improved binary clonal flower pollination algorithm is proposed to eliminate unnecessary features and ensure a highly accurate classification of disease. The absolute balance group strategy and adaptive Gaussian mutation are adopted, which can increase the diversity of the population and improve the search performance. The KNN classifier is used to evaluate the classification accuracy. Extensive experimental results in six, publicly available, high-dimensional, biomedical datasets show that the proposed method can obtain high classification accuracy and outperforms other state-of-the-art methods.\",\"PeriodicalId\":13226,\"journal\":{\"name\":\"Human Heredity\",\"volume\":\"84 1\",\"pages\":\"34 - 46\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000501652\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000501652\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000501652","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A Novel Feature Selection Method for High-Dimensional Biomedical Data Based on an Improved Binary Clonal Flower Pollination Algorithm
In the biomedical field, large amounts of biological and clinical data have been accumulated rapidly, which can be analyzed to emphasize the assessment of at-risk patients and improve diagnosis. However, a major challenge encountered associated with biomedical data analysis is the so-called “curse of dimensionality.” For this issue, a novel feature selection method based on an improved binary clonal flower pollination algorithm is proposed to eliminate unnecessary features and ensure a highly accurate classification of disease. The absolute balance group strategy and adaptive Gaussian mutation are adopted, which can increase the diversity of the population and improve the search performance. The KNN classifier is used to evaluate the classification accuracy. Extensive experimental results in six, publicly available, high-dimensional, biomedical datasets show that the proposed method can obtain high classification accuracy and outperforms other state-of-the-art methods.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.