{"title":"基于三自由度模型的火电厂抗震优化设计迭代方法","authors":"Yuheng Jiang, L. Duan, Jin-cheng Zhao","doi":"10.1115/1.4056838","DOIUrl":null,"url":null,"abstract":"\n As a key infrastructure in the lifeline system, the safety of the Coal-Fired Thermal Power Plants (CFTPPs) under earthquake loading is not properly considered since a systematic optimization method for seismic design of CFTPPs is scarce. This paper presents a simple iterative method for globally optimizing the dynamic parameters of the typical CFTPPs, which can be considered a special type of tuned mass damping. In this paper, the fixed-point theory is firstly applied to a 2-DOF model of an actual CFTPP as a benchmark. Because the optimized parameters obtained from the fixed-point theory are roughly and cannot be used in practice, an iterative method based on the frequency domain analysis of a 3-DOF model of the CFTPP is then presented and used to obtain more detailed and optimized parameters, where the basic idea is to make extremum values of frequency response curve as small as possible. To show the potential of the proposed method, an illustrative example is introduced, and the results show that the presented method is effective in alleviating the seismic responses of CFTPPs. Compared to the classic fixed-point theory, the presented iterative method can handle multi-DOF models under different conditions but needs no complicated calculations, and this makes it possible to lead to a more efficient and precise seismic design of CFTPPs.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An iterative method based on a 3-DOF model for optimal seismic design of coal-fired thermal power plant\",\"authors\":\"Yuheng Jiang, L. Duan, Jin-cheng Zhao\",\"doi\":\"10.1115/1.4056838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As a key infrastructure in the lifeline system, the safety of the Coal-Fired Thermal Power Plants (CFTPPs) under earthquake loading is not properly considered since a systematic optimization method for seismic design of CFTPPs is scarce. This paper presents a simple iterative method for globally optimizing the dynamic parameters of the typical CFTPPs, which can be considered a special type of tuned mass damping. In this paper, the fixed-point theory is firstly applied to a 2-DOF model of an actual CFTPP as a benchmark. Because the optimized parameters obtained from the fixed-point theory are roughly and cannot be used in practice, an iterative method based on the frequency domain analysis of a 3-DOF model of the CFTPP is then presented and used to obtain more detailed and optimized parameters, where the basic idea is to make extremum values of frequency response curve as small as possible. To show the potential of the proposed method, an illustrative example is introduced, and the results show that the presented method is effective in alleviating the seismic responses of CFTPPs. Compared to the classic fixed-point theory, the presented iterative method can handle multi-DOF models under different conditions but needs no complicated calculations, and this makes it possible to lead to a more efficient and precise seismic design of CFTPPs.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056838\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056838","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
An iterative method based on a 3-DOF model for optimal seismic design of coal-fired thermal power plant
As a key infrastructure in the lifeline system, the safety of the Coal-Fired Thermal Power Plants (CFTPPs) under earthquake loading is not properly considered since a systematic optimization method for seismic design of CFTPPs is scarce. This paper presents a simple iterative method for globally optimizing the dynamic parameters of the typical CFTPPs, which can be considered a special type of tuned mass damping. In this paper, the fixed-point theory is firstly applied to a 2-DOF model of an actual CFTPP as a benchmark. Because the optimized parameters obtained from the fixed-point theory are roughly and cannot be used in practice, an iterative method based on the frequency domain analysis of a 3-DOF model of the CFTPP is then presented and used to obtain more detailed and optimized parameters, where the basic idea is to make extremum values of frequency response curve as small as possible. To show the potential of the proposed method, an illustrative example is introduced, and the results show that the presented method is effective in alleviating the seismic responses of CFTPPs. Compared to the classic fixed-point theory, the presented iterative method can handle multi-DOF models under different conditions but needs no complicated calculations, and this makes it possible to lead to a more efficient and precise seismic design of CFTPPs.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.