{"title":"准地转系统中方位波数为1的生长涡罗斯比波","authors":"Takahiro Ito, S. Nishimoto, H. Kanehisa","doi":"10.2151/JMSJ.2018-055","DOIUrl":null,"url":null,"abstract":"In this study, we show analytically that vortex Rossby waves (VRWs) with azimuthal wavenumber m = 1 in a basic axisymmetric vortex can grow exponentially in a quasi-geostrophic system, although they cannot do so in a barotropic system. VRWs grow exponentially if Rayleigh’s condition and Fjørtoft’s condition are satisfied. Satisfying Rayleigh’s condition means that two horizontally aligned VRWs at two different radii propagate (here and hereafter “propagate” refers to propagation relative to the fluid) azimuthally counter to each other. Satisfying Fjørtoft’s condition means that the cyclonic advective angular velocity of the basic vortex is distributed radially so as to enable the VRWs to be phase-locked with each other. Under these conditions, a strong mutual interaction between the VRWs becomes possible, and thus they grow exponentially. In a barotropic system, even if Rayleigh’s condition is satisfied, the azimuthal counter propagation of VRWs with azimuthal wavenumber m = 1 is so strong that phase-locking between them cannot occur, and thus they cannot grow exponentially. In a quasi-geostrophic system, however, the upper and lower VRWs of the first baroclinic vertical mode are equal in magnitude and have opposite signs. Because of this baroclinic structure, the azimuthal counter propagation of the horizontally aligned VRWs is suppressed by the vertical interactions between the upper and lower VRWs. Consequently, horizontally aligned VRWs with azimuthal wavenumber m = 1 may become phaselocked, and hence they may grow exponentially. By analytically solving the linear problem of VRWs in a quasigeostrophic system, we show that this is indeed the case.","PeriodicalId":17476,"journal":{"name":"Journal of the Meteorological Society of Japan","volume":"96 1","pages":"549-564"},"PeriodicalIF":2.4000,"publicationDate":"2018-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Growing Vortex Rossby Waves with Azimuthal Wavenumber One in Quasigeostrophic System\",\"authors\":\"Takahiro Ito, S. Nishimoto, H. Kanehisa\",\"doi\":\"10.2151/JMSJ.2018-055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we show analytically that vortex Rossby waves (VRWs) with azimuthal wavenumber m = 1 in a basic axisymmetric vortex can grow exponentially in a quasi-geostrophic system, although they cannot do so in a barotropic system. VRWs grow exponentially if Rayleigh’s condition and Fjørtoft’s condition are satisfied. Satisfying Rayleigh’s condition means that two horizontally aligned VRWs at two different radii propagate (here and hereafter “propagate” refers to propagation relative to the fluid) azimuthally counter to each other. Satisfying Fjørtoft’s condition means that the cyclonic advective angular velocity of the basic vortex is distributed radially so as to enable the VRWs to be phase-locked with each other. Under these conditions, a strong mutual interaction between the VRWs becomes possible, and thus they grow exponentially. In a barotropic system, even if Rayleigh’s condition is satisfied, the azimuthal counter propagation of VRWs with azimuthal wavenumber m = 1 is so strong that phase-locking between them cannot occur, and thus they cannot grow exponentially. In a quasi-geostrophic system, however, the upper and lower VRWs of the first baroclinic vertical mode are equal in magnitude and have opposite signs. Because of this baroclinic structure, the azimuthal counter propagation of the horizontally aligned VRWs is suppressed by the vertical interactions between the upper and lower VRWs. Consequently, horizontally aligned VRWs with azimuthal wavenumber m = 1 may become phaselocked, and hence they may grow exponentially. By analytically solving the linear problem of VRWs in a quasigeostrophic system, we show that this is indeed the case.\",\"PeriodicalId\":17476,\"journal\":{\"name\":\"Journal of the Meteorological Society of Japan\",\"volume\":\"96 1\",\"pages\":\"549-564\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2018-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Meteorological Society of Japan\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/JMSJ.2018-055\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Meteorological Society of Japan","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/JMSJ.2018-055","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Growing Vortex Rossby Waves with Azimuthal Wavenumber One in Quasigeostrophic System
In this study, we show analytically that vortex Rossby waves (VRWs) with azimuthal wavenumber m = 1 in a basic axisymmetric vortex can grow exponentially in a quasi-geostrophic system, although they cannot do so in a barotropic system. VRWs grow exponentially if Rayleigh’s condition and Fjørtoft’s condition are satisfied. Satisfying Rayleigh’s condition means that two horizontally aligned VRWs at two different radii propagate (here and hereafter “propagate” refers to propagation relative to the fluid) azimuthally counter to each other. Satisfying Fjørtoft’s condition means that the cyclonic advective angular velocity of the basic vortex is distributed radially so as to enable the VRWs to be phase-locked with each other. Under these conditions, a strong mutual interaction between the VRWs becomes possible, and thus they grow exponentially. In a barotropic system, even if Rayleigh’s condition is satisfied, the azimuthal counter propagation of VRWs with azimuthal wavenumber m = 1 is so strong that phase-locking between them cannot occur, and thus they cannot grow exponentially. In a quasi-geostrophic system, however, the upper and lower VRWs of the first baroclinic vertical mode are equal in magnitude and have opposite signs. Because of this baroclinic structure, the azimuthal counter propagation of the horizontally aligned VRWs is suppressed by the vertical interactions between the upper and lower VRWs. Consequently, horizontally aligned VRWs with azimuthal wavenumber m = 1 may become phaselocked, and hence they may grow exponentially. By analytically solving the linear problem of VRWs in a quasigeostrophic system, we show that this is indeed the case.
期刊介绍:
JMSJ publishes Articles and Notes and Correspondence that report novel scientific discoveries or technical developments that advance understanding in meteorology and related sciences. The journal’s broad scope includes meteorological observations, modeling, data assimilation, analyses, global and regional climate research, satellite remote sensing, chemistry and transport, and dynamic meteorology including geophysical fluid dynamics. In particular, JMSJ welcomes papers related to Asian monsoons, climate and mesoscale models, and numerical weather forecasts. Insightful and well-structured original Review Articles that describe the advances and challenges in meteorology and related sciences are also welcome.