基于观察数据的异质亚群识别:基于国家学习心态研究的个案研究

Bryan Keller, Jianshen Chen, Tianyang Zhang
{"title":"基于观察数据的异质亚群识别:基于国家学习心态研究的个案研究","authors":"Bryan Keller, Jianshen Chen, Tianyang Zhang","doi":"10.1353/obs.2019.0010","DOIUrl":null,"url":null,"abstract":"Abstract:In this paper, we use a two-step approach for heterogeneous subgroup identification with a synthetic data set motivated by the National Study of Learning Mindsets. In the first step, optimal full propensity score matching is used to estimate stratum-specific treatment effects. In the second step, regression trees identify key subgroups based on covariates for which the treatment effect varies. In working with regression trees, we emphasize the role of the cost-complexity tuning parameter, selected through permutation-based Type I error rate studies, in justifying inferential decision-making, which we contrast with graphical and quantitative exploration for future study. Results indicate that the mindset intervention was effective, overall, in improving student achievement. While our exploratory analyses identified XC, C1, and X1 as potential effect modifiers worthy of further study, we find no statistically significant evidence of effect heterogeneity with the exception of urbanicity category XC = 3, but the finding is not robust to propensity score estimation method.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/obs.2019.0010","citationCount":"9","resultStr":"{\"title\":\"Heterogeneous Subgroup Identification with Observational Data: A Case Study Based on the National Study of Learning Mindsets\",\"authors\":\"Bryan Keller, Jianshen Chen, Tianyang Zhang\",\"doi\":\"10.1353/obs.2019.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:In this paper, we use a two-step approach for heterogeneous subgroup identification with a synthetic data set motivated by the National Study of Learning Mindsets. In the first step, optimal full propensity score matching is used to estimate stratum-specific treatment effects. In the second step, regression trees identify key subgroups based on covariates for which the treatment effect varies. In working with regression trees, we emphasize the role of the cost-complexity tuning parameter, selected through permutation-based Type I error rate studies, in justifying inferential decision-making, which we contrast with graphical and quantitative exploration for future study. Results indicate that the mindset intervention was effective, overall, in improving student achievement. While our exploratory analyses identified XC, C1, and X1 as potential effect modifiers worthy of further study, we find no statistically significant evidence of effect heterogeneity with the exception of urbanicity category XC = 3, but the finding is not robust to propensity score estimation method.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1353/obs.2019.0010\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2019.0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2019.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

摘要:本文采用一种两步法,利用国家学习心态研究(National Study of Learning mindset)的综合数据集进行异质性亚群识别。第一步,利用最优全倾向评分匹配来估计层特异性处理效果。在第二步中,回归树根据治疗效果变化的协变量确定关键子组。在使用回归树时,我们强调通过基于排列的I型错误率研究选择的成本-复杂性调整参数在证明推理决策中的作用,并将其与未来研究的图形和定量探索进行对比。结果表明,心态干预在提高学生成绩方面是有效的。虽然我们的探索性分析发现XC、C1和X1是值得进一步研究的潜在影响修饰因子,但除了城市化类别XC = 3外,我们没有发现统计学上显著的效应异质性证据,但这一发现对于倾向得分估计方法并不稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous Subgroup Identification with Observational Data: A Case Study Based on the National Study of Learning Mindsets
Abstract:In this paper, we use a two-step approach for heterogeneous subgroup identification with a synthetic data set motivated by the National Study of Learning Mindsets. In the first step, optimal full propensity score matching is used to estimate stratum-specific treatment effects. In the second step, regression trees identify key subgroups based on covariates for which the treatment effect varies. In working with regression trees, we emphasize the role of the cost-complexity tuning parameter, selected through permutation-based Type I error rate studies, in justifying inferential decision-making, which we contrast with graphical and quantitative exploration for future study. Results indicate that the mindset intervention was effective, overall, in improving student achievement. While our exploratory analyses identified XC, C1, and X1 as potential effect modifiers worthy of further study, we find no statistically significant evidence of effect heterogeneity with the exception of urbanicity category XC = 3, but the finding is not robust to propensity score estimation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Does matching introduce confounding or selection bias into the matched case-control design? Size-biased sensitivity analysis for matched pairs design to assess the impact of healthcare-associated infections A Software Tutorial for Matching in Clustered Observational Studies Using a difference-in-difference control trial to test an intervention aimed at increasing the take-up of a welfare payment in New Zealand Estimating Treatment Effect with Propensity Score Weighted Regression and Double Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1