{"title":"采用优化技术对6061铝合金电火花加工的表面粗糙度和材料去除率进行了研究","authors":"MOHD SAIF, Ritik Kumar Rawat","doi":"10.15282/jmes.17.1.2023.10.0744","DOIUrl":null,"url":null,"abstract":"Wire-electric discharge machining offers a number of benefits in comparison to traditional manufacturing processes likewise, no obvious mechanical cutting traces also hard and rigid materials can be processed perfectly in WEDM. Since, aluminum alloys are used in aerospace, shipbuilding, breathing gas cylinders for scuba diving, surgical components and automotive industry for their high-strength-to-weight ratio, accurate shapes and dimensions. Through this method, complicated structures made of aluminum alloy are produced in a single setup with incredibly tight tolerances. The present investigation explores WEDM for AA6061 to optimize different process variables for attaining performance measures in terms of maximum MRR and minimum SR. Taguchi’s L18 OA matrix, S/N ratio, ANOVA and Grey Relational Analysis were employed to optimize SR and MRR. It has been noted from ANOVA that pulse on time and peak current are the most influential aspects for MRR and SR with their contributions of 13.33% and 16.25% respectively. Further, the best possible considered parameters setting has been established by applying GRA for MRR and SR are, pulse on time-50µs, pulse off time-13µs and peak current-4 amp.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of aluminum alloy 6061 in Wire-EDM regarding surface roughness and material removal rate by adopting optimization techniques\",\"authors\":\"MOHD SAIF, Ritik Kumar Rawat\",\"doi\":\"10.15282/jmes.17.1.2023.10.0744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wire-electric discharge machining offers a number of benefits in comparison to traditional manufacturing processes likewise, no obvious mechanical cutting traces also hard and rigid materials can be processed perfectly in WEDM. Since, aluminum alloys are used in aerospace, shipbuilding, breathing gas cylinders for scuba diving, surgical components and automotive industry for their high-strength-to-weight ratio, accurate shapes and dimensions. Through this method, complicated structures made of aluminum alloy are produced in a single setup with incredibly tight tolerances. The present investigation explores WEDM for AA6061 to optimize different process variables for attaining performance measures in terms of maximum MRR and minimum SR. Taguchi’s L18 OA matrix, S/N ratio, ANOVA and Grey Relational Analysis were employed to optimize SR and MRR. It has been noted from ANOVA that pulse on time and peak current are the most influential aspects for MRR and SR with their contributions of 13.33% and 16.25% respectively. Further, the best possible considered parameters setting has been established by applying GRA for MRR and SR are, pulse on time-50µs, pulse off time-13µs and peak current-4 amp.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.17.1.2023.10.0744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.1.2023.10.0744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation of aluminum alloy 6061 in Wire-EDM regarding surface roughness and material removal rate by adopting optimization techniques
Wire-electric discharge machining offers a number of benefits in comparison to traditional manufacturing processes likewise, no obvious mechanical cutting traces also hard and rigid materials can be processed perfectly in WEDM. Since, aluminum alloys are used in aerospace, shipbuilding, breathing gas cylinders for scuba diving, surgical components and automotive industry for their high-strength-to-weight ratio, accurate shapes and dimensions. Through this method, complicated structures made of aluminum alloy are produced in a single setup with incredibly tight tolerances. The present investigation explores WEDM for AA6061 to optimize different process variables for attaining performance measures in terms of maximum MRR and minimum SR. Taguchi’s L18 OA matrix, S/N ratio, ANOVA and Grey Relational Analysis were employed to optimize SR and MRR. It has been noted from ANOVA that pulse on time and peak current are the most influential aspects for MRR and SR with their contributions of 13.33% and 16.25% respectively. Further, the best possible considered parameters setting has been established by applying GRA for MRR and SR are, pulse on time-50µs, pulse off time-13µs and peak current-4 amp.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.