{"title":"Ti-12在各种电解质中的阳极行为","authors":"U. Raghavender, K. Kumar, E. R. Reddy, A. Reddy","doi":"10.18311/JSST/2018/16027","DOIUrl":null,"url":null,"abstract":"Anodization of Ti-12 alloy has been carried out in various electrolytes at different constant current densities and temperatures. Kinetics of anodic films was studied in different electrolytes at different constant current densities ranging from 4mAcm -2 to 64mAcm -2 and at different temperatures ranging from 298 to 338K. From the plots of formation voltage (V) vs time (t), rates of formation were calculated. The rate of film formation and breakdown voltage increase with increase in constant current density while decrease with increase in temperature. The kinetics were found better in sulphamic acid electrolyte at room temperature compared to other electrolytes at the same anodizing conditions.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anodic Behaviour of Ti-12 in Various Electrolytes\",\"authors\":\"U. Raghavender, K. Kumar, E. R. Reddy, A. Reddy\",\"doi\":\"10.18311/JSST/2018/16027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anodization of Ti-12 alloy has been carried out in various electrolytes at different constant current densities and temperatures. Kinetics of anodic films was studied in different electrolytes at different constant current densities ranging from 4mAcm -2 to 64mAcm -2 and at different temperatures ranging from 298 to 338K. From the plots of formation voltage (V) vs time (t), rates of formation were calculated. The rate of film formation and breakdown voltage increase with increase in constant current density while decrease with increase in temperature. The kinetics were found better in sulphamic acid electrolyte at room temperature compared to other electrolytes at the same anodizing conditions.\",\"PeriodicalId\":17031,\"journal\":{\"name\":\"Journal of Surface Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/JSST/2018/16027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JSST/2018/16027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Anodization of Ti-12 alloy has been carried out in various electrolytes at different constant current densities and temperatures. Kinetics of anodic films was studied in different electrolytes at different constant current densities ranging from 4mAcm -2 to 64mAcm -2 and at different temperatures ranging from 298 to 338K. From the plots of formation voltage (V) vs time (t), rates of formation were calculated. The rate of film formation and breakdown voltage increase with increase in constant current density while decrease with increase in temperature. The kinetics were found better in sulphamic acid electrolyte at room temperature compared to other electrolytes at the same anodizing conditions.
期刊介绍:
The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction