Priyanka kumari Bhansali, Dilendra Hiran, K. Gulati
{"title":"集成联邦学习的IoMT架构的安全数据收集和传输","authors":"Priyanka kumari Bhansali, Dilendra Hiran, K. Gulati","doi":"10.1108/ijpcc-02-2022-0042","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to secure health data collection and transmission (SHDCT). In this system, a native network consists of portable smart devices that interact with multiple gateways. It entails IoMT devices and wearables connecting to exchange sensitive data with a sensor node which performs the aggeration process and then communicates the data using a Fog server. If the aggregator sensor loses the connection from the Fog server, it will be unable to submit data directly to the Fog server. The node transmits encrypted information with a neighboring sensor and sends it to the Fog server integrated with federated learning, which encrypts data to the existing data. The fog server performs the operations on the measured data, and the values are stored in the local storage area and later it is updated to the cloud server.\n\n\nDesign/methodology/approach\nSHDCT uses an Internet-of-things (IoT)-based monitoring network, making it possible for smart devices to connect and interact with each other. The main purpose of the monitoring network has been in the collection of biological data and additional information from mobile devices to the patients. The monitoring network is composed of three different types of smart devices that is at the heart of the IoT.\n\n\nFindings\nIt has been addressed in this work how to design an architecture for safe data aggregation in heterogeneous IoT-federated learning-enabled wireless sensor networks (WSNs), which makes use of basic encoding and data aggregation methods to achieve this. The authors suggest that the small gateway node (SGN) captures all of the sensed data from the SD and uses a simple, lightweight encoding scheme and cryptographic techniques to convey the data to the gateway node (GWN). The GWN gets all of the medical data from SGN and ensures that the data is accurate and up to date. If the data obtained is trustworthy, then the medical data should be aggregated and sent to the Fog server for further processing. The Java programming language simulates and analyzes the proposed SHDCT model for deployment and message initiation. When comparing the SHDCT scheme to the SPPDA and electrohydrodynamic atomisation (EHDA) schemes, the results show that the SHDCT method performs significantly better. When compared with the SPPDA and EHDA schemes, the suggested SHDCT plan necessitates a lower communication cost. In comparison to EHDA and SPPDA, SHDCT achieves 4.72% and 13.59% less, respectively. When compared to other transmission techniques, SHDCT has a higher transmission ratio. When compared with EHDA and SPPDA, SHDCT achieves 8.47% and 24.41% higher transmission ratios, respectively. When compared with other ways it uses less electricity. When compared with EHDA and SPPDA, SHDCT achieves 5.85% and 18.86% greater residual energy, respectively.\n\n\nOriginality/value\nIn the health care sector, a series of interconnected medical devices collect data using IoT networks in the health care domain. Preventive, predictive, personalized and participatory care is becoming increasingly popular in the health care sector. Safe data collection and transfer to a centralized server is a challenging scenario. This study presents a mechanism for SHDCT. The mechanism consists of Smart healthcare IoT devices working on federated learning that link up with one another to exchange health data. Health data is sensitive and needs to be exchanged securely and efficiently. In the mechanism, the sensing devices send data to a SGN. This SGN uses a lightweight encoding scheme and performs cryptography techniques to communicate the data with the GWN. The GWN gets all the health data from the SGN and makes it possible to confirm that the data is validated. If the received data is reliable, then aggregate the medical data and transmit it to the Fog server for further process. The performance parameters are compared with the other systems in terms of communication costs, transmission ratio and energy use.\n","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Secure data collection and transmission for IoMT architecture integrated with federated learning\",\"authors\":\"Priyanka kumari Bhansali, Dilendra Hiran, K. Gulati\",\"doi\":\"10.1108/ijpcc-02-2022-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this paper is to secure health data collection and transmission (SHDCT). In this system, a native network consists of portable smart devices that interact with multiple gateways. It entails IoMT devices and wearables connecting to exchange sensitive data with a sensor node which performs the aggeration process and then communicates the data using a Fog server. If the aggregator sensor loses the connection from the Fog server, it will be unable to submit data directly to the Fog server. The node transmits encrypted information with a neighboring sensor and sends it to the Fog server integrated with federated learning, which encrypts data to the existing data. The fog server performs the operations on the measured data, and the values are stored in the local storage area and later it is updated to the cloud server.\\n\\n\\nDesign/methodology/approach\\nSHDCT uses an Internet-of-things (IoT)-based monitoring network, making it possible for smart devices to connect and interact with each other. The main purpose of the monitoring network has been in the collection of biological data and additional information from mobile devices to the patients. The monitoring network is composed of three different types of smart devices that is at the heart of the IoT.\\n\\n\\nFindings\\nIt has been addressed in this work how to design an architecture for safe data aggregation in heterogeneous IoT-federated learning-enabled wireless sensor networks (WSNs), which makes use of basic encoding and data aggregation methods to achieve this. The authors suggest that the small gateway node (SGN) captures all of the sensed data from the SD and uses a simple, lightweight encoding scheme and cryptographic techniques to convey the data to the gateway node (GWN). The GWN gets all of the medical data from SGN and ensures that the data is accurate and up to date. If the data obtained is trustworthy, then the medical data should be aggregated and sent to the Fog server for further processing. The Java programming language simulates and analyzes the proposed SHDCT model for deployment and message initiation. When comparing the SHDCT scheme to the SPPDA and electrohydrodynamic atomisation (EHDA) schemes, the results show that the SHDCT method performs significantly better. When compared with the SPPDA and EHDA schemes, the suggested SHDCT plan necessitates a lower communication cost. In comparison to EHDA and SPPDA, SHDCT achieves 4.72% and 13.59% less, respectively. When compared to other transmission techniques, SHDCT has a higher transmission ratio. When compared with EHDA and SPPDA, SHDCT achieves 8.47% and 24.41% higher transmission ratios, respectively. When compared with other ways it uses less electricity. When compared with EHDA and SPPDA, SHDCT achieves 5.85% and 18.86% greater residual energy, respectively.\\n\\n\\nOriginality/value\\nIn the health care sector, a series of interconnected medical devices collect data using IoT networks in the health care domain. Preventive, predictive, personalized and participatory care is becoming increasingly popular in the health care sector. Safe data collection and transfer to a centralized server is a challenging scenario. This study presents a mechanism for SHDCT. The mechanism consists of Smart healthcare IoT devices working on federated learning that link up with one another to exchange health data. Health data is sensitive and needs to be exchanged securely and efficiently. In the mechanism, the sensing devices send data to a SGN. This SGN uses a lightweight encoding scheme and performs cryptography techniques to communicate the data with the GWN. The GWN gets all the health data from the SGN and makes it possible to confirm that the data is validated. If the received data is reliable, then aggregate the medical data and transmit it to the Fog server for further process. The performance parameters are compared with the other systems in terms of communication costs, transmission ratio and energy use.\\n\",\"PeriodicalId\":43952,\"journal\":{\"name\":\"International Journal of Pervasive Computing and Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pervasive Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijpcc-02-2022-0042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-02-2022-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Secure data collection and transmission for IoMT architecture integrated with federated learning
Purpose
The purpose of this paper is to secure health data collection and transmission (SHDCT). In this system, a native network consists of portable smart devices that interact with multiple gateways. It entails IoMT devices and wearables connecting to exchange sensitive data with a sensor node which performs the aggeration process and then communicates the data using a Fog server. If the aggregator sensor loses the connection from the Fog server, it will be unable to submit data directly to the Fog server. The node transmits encrypted information with a neighboring sensor and sends it to the Fog server integrated with federated learning, which encrypts data to the existing data. The fog server performs the operations on the measured data, and the values are stored in the local storage area and later it is updated to the cloud server.
Design/methodology/approach
SHDCT uses an Internet-of-things (IoT)-based monitoring network, making it possible for smart devices to connect and interact with each other. The main purpose of the monitoring network has been in the collection of biological data and additional information from mobile devices to the patients. The monitoring network is composed of three different types of smart devices that is at the heart of the IoT.
Findings
It has been addressed in this work how to design an architecture for safe data aggregation in heterogeneous IoT-federated learning-enabled wireless sensor networks (WSNs), which makes use of basic encoding and data aggregation methods to achieve this. The authors suggest that the small gateway node (SGN) captures all of the sensed data from the SD and uses a simple, lightweight encoding scheme and cryptographic techniques to convey the data to the gateway node (GWN). The GWN gets all of the medical data from SGN and ensures that the data is accurate and up to date. If the data obtained is trustworthy, then the medical data should be aggregated and sent to the Fog server for further processing. The Java programming language simulates and analyzes the proposed SHDCT model for deployment and message initiation. When comparing the SHDCT scheme to the SPPDA and electrohydrodynamic atomisation (EHDA) schemes, the results show that the SHDCT method performs significantly better. When compared with the SPPDA and EHDA schemes, the suggested SHDCT plan necessitates a lower communication cost. In comparison to EHDA and SPPDA, SHDCT achieves 4.72% and 13.59% less, respectively. When compared to other transmission techniques, SHDCT has a higher transmission ratio. When compared with EHDA and SPPDA, SHDCT achieves 8.47% and 24.41% higher transmission ratios, respectively. When compared with other ways it uses less electricity. When compared with EHDA and SPPDA, SHDCT achieves 5.85% and 18.86% greater residual energy, respectively.
Originality/value
In the health care sector, a series of interconnected medical devices collect data using IoT networks in the health care domain. Preventive, predictive, personalized and participatory care is becoming increasingly popular in the health care sector. Safe data collection and transfer to a centralized server is a challenging scenario. This study presents a mechanism for SHDCT. The mechanism consists of Smart healthcare IoT devices working on federated learning that link up with one another to exchange health data. Health data is sensitive and needs to be exchanged securely and efficiently. In the mechanism, the sensing devices send data to a SGN. This SGN uses a lightweight encoding scheme and performs cryptography techniques to communicate the data with the GWN. The GWN gets all the health data from the SGN and makes it possible to confirm that the data is validated. If the received data is reliable, then aggregate the medical data and transmit it to the Fog server for further process. The performance parameters are compared with the other systems in terms of communication costs, transmission ratio and energy use.