用Colding和Taylor刀具寿命模型预测C45E侧铣刀的刀具寿命

IF 3.9 Q2 ENGINEERING, INDUSTRIAL Advances in Industrial and Manufacturing Engineering Pub Date : 2023-07-20 DOI:10.1016/j.aime.2023.100126
Fredrik Kantojärvi , Elias Vikenadler , Daniel Johansson , Sören Hägglund , Rachid M’Saoubi
{"title":"用Colding和Taylor刀具寿命模型预测C45E侧铣刀的刀具寿命","authors":"Fredrik Kantojärvi ,&nbsp;Elias Vikenadler ,&nbsp;Daniel Johansson ,&nbsp;Sören Hägglund ,&nbsp;Rachid M’Saoubi","doi":"10.1016/j.aime.2023.100126","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the possibility of using empirical tool life models to predict tool life in a side milling application in a medium carbon steel, C 45E. To do this, an extensive dataset containing 46 data points with different machining parameters are produced. Four different empirical models: Taylor’s equation, Colding’s equation and Extended Taylor both using depth of cut and feed as well as an Extended Taylor using equivalent chip thickness has been considered. It is found that Colding’s equation is best suited to predict the tool life for this application. Furthermore, this paper suggests a novel method to fit the experimental data to the empirical models. Based on the results from previously published papers it is shown that the proposed method performs equally or better to determine the model constants.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"7 ","pages":"Article 100126"},"PeriodicalIF":3.9000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting tool life for side milling in C45 E using Colding and Taylor tool life models\",\"authors\":\"Fredrik Kantojärvi ,&nbsp;Elias Vikenadler ,&nbsp;Daniel Johansson ,&nbsp;Sören Hägglund ,&nbsp;Rachid M’Saoubi\",\"doi\":\"10.1016/j.aime.2023.100126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the possibility of using empirical tool life models to predict tool life in a side milling application in a medium carbon steel, C 45E. To do this, an extensive dataset containing 46 data points with different machining parameters are produced. Four different empirical models: Taylor’s equation, Colding’s equation and Extended Taylor both using depth of cut and feed as well as an Extended Taylor using equivalent chip thickness has been considered. It is found that Colding’s equation is best suited to predict the tool life for this application. Furthermore, this paper suggests a novel method to fit the experimental data to the empirical models. Based on the results from previously published papers it is shown that the proposed method performs equally or better to determine the model constants.</p></div>\",\"PeriodicalId\":34573,\"journal\":{\"name\":\"Advances in Industrial and Manufacturing Engineering\",\"volume\":\"7 \",\"pages\":\"Article 100126\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Industrial and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666912923000156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912923000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了利用经验刀具寿命模型预测中碳钢c45e侧铣削刀具寿命的可能性。为此,生成了一个包含46个具有不同加工参数的数据点的广泛数据集。四种不同的经验模型:泰勒方程,柯尔丁方程和扩展泰勒都使用切削深度和进给量,以及扩展泰勒使用等效切屑厚度已被考虑。研究发现,柯尔丁方程最适合于预测这种应用的刀具寿命。此外,本文还提出了一种将实验数据拟合到经验模型中的新方法。基于已有文献的结果表明,所提出的方法在确定模型常数方面具有同等或更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting tool life for side milling in C45 E using Colding and Taylor tool life models

This paper investigates the possibility of using empirical tool life models to predict tool life in a side milling application in a medium carbon steel, C 45E. To do this, an extensive dataset containing 46 data points with different machining parameters are produced. Four different empirical models: Taylor’s equation, Colding’s equation and Extended Taylor both using depth of cut and feed as well as an Extended Taylor using equivalent chip thickness has been considered. It is found that Colding’s equation is best suited to predict the tool life for this application. Furthermore, this paper suggests a novel method to fit the experimental data to the empirical models. Based on the results from previously published papers it is shown that the proposed method performs equally or better to determine the model constants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
期刊最新文献
Experimental investigation on micro-EDM hybrid drilling process Impact of graphene nanoparticles on DLP-printed parts' mechanical behavior Erratum to “Influence of changing loading directions on damage in sheet metal forming” [Adv. Ind. Manuf. Eng. 8 (2024) 100139] Modeling of equivalent strain in 2D cross-sections of open die forged components using neural networks Influence on micro-geometry and surface characteristics of laser powder bed fusion built 17-4 PH miniature spur gears in laser shock peening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1