{"title":"指向证明的程序转换:高效正则表达式匹配的功能描述","authors":"Andrzej Filinski","doi":"10.1017/S0956796820000295","DOIUrl":null,"url":null,"abstract":"Abstract We show how to systematically derive an efficient regular expression (regex) matcher using a variety of program transformation techniques, but very little specialized formal language and automata theory. Starting from the standard specification of the set-theoretic semantics of regular expressions, we proceed via a continuation-based backtracking matcher, to a classical, table-driven state machine. All steps of the development are supported by self-contained (and machine-verified) equational correctness proofs.","PeriodicalId":15874,"journal":{"name":"Journal of Functional Programming","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof-directed program transformation: A functional account of efficient regular expression matching\",\"authors\":\"Andrzej Filinski\",\"doi\":\"10.1017/S0956796820000295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show how to systematically derive an efficient regular expression (regex) matcher using a variety of program transformation techniques, but very little specialized formal language and automata theory. Starting from the standard specification of the set-theoretic semantics of regular expressions, we proceed via a continuation-based backtracking matcher, to a classical, table-driven state machine. All steps of the development are supported by self-contained (and machine-verified) equational correctness proofs.\",\"PeriodicalId\":15874,\"journal\":{\"name\":\"Journal of Functional Programming\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0956796820000295\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0956796820000295","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Proof-directed program transformation: A functional account of efficient regular expression matching
Abstract We show how to systematically derive an efficient regular expression (regex) matcher using a variety of program transformation techniques, but very little specialized formal language and automata theory. Starting from the standard specification of the set-theoretic semantics of regular expressions, we proceed via a continuation-based backtracking matcher, to a classical, table-driven state machine. All steps of the development are supported by self-contained (and machine-verified) equational correctness proofs.
期刊介绍:
Journal of Functional Programming is the only journal devoted solely to the design, implementation, and application of functional programming languages, spanning the range from mathematical theory to industrial practice. Topics covered include functional languages and extensions, implementation techniques, reasoning and proof, program transformation and synthesis, type systems, type theory, language-based security, memory management, parallelism and applications. The journal is of interest to computer scientists, software engineers, programming language researchers and mathematicians interested in the logical foundations of programming.