根据生产力数据估计生产潜力领域的方法

IF 0.4 4区 农林科学 Q4 AGRICULTURE, MULTIDISCIPLINARY Semina-ciencias Agrarias Pub Date : 2023-07-13 DOI:10.5433/1679-0359.2023v44n3p1001
Lara Marie Guanais Santos, Otávio Jorge Grigoli Abi Saab, M. F. Guimarães, R. Ralisch, Hevandro Colonhese Delalibera
{"title":"根据生产力数据估计生产潜力领域的方法","authors":"Lara Marie Guanais Santos, Otávio Jorge Grigoli Abi Saab, M. F. Guimarães, R. Ralisch, Hevandro Colonhese Delalibera","doi":"10.5433/1679-0359.2023v44n3p1001","DOIUrl":null,"url":null,"abstract":"The methodology proposed herein for identifying potentially productive zones from yield data captured by harvester onboard sensors aims to establish a viable and easy-to-implement method for defining management zones by running statistical procedures on data from the harvest monitor. To do this, yield data from maize (2018 winter/second growing season) and soybean (2019 growing season) were converted into ɀ-score values and compared at a 99.8% confidence interval of standard normal distribution ɀ. Simultaneously, the degree of linearity was evaluated and Jackknife resampling, for removing data outside the range (outliers) established by the ɀ table (<-3.09 and >3.09). Next, yield score-ɀ algebraic mapping was performed to obtain a mean crop map, then applying three classes from the probability intervals of a plus and minus deviation, resulting in a map of potentially productive zones (below average, average and above average yield). Using this method, 5.72% of the area exhibited low yield potential, 90.71% average potential and 3.57% high yield potential. This analysis method was easy and quick to perform and provided summarized information, facilitating additional field surveys and providing a basis for decision-making.","PeriodicalId":21663,"journal":{"name":"Semina-ciencias Agrarias","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metodologia para estimativa de zonas de potencial produtivo a partir de dados de produtividade\",\"authors\":\"Lara Marie Guanais Santos, Otávio Jorge Grigoli Abi Saab, M. F. Guimarães, R. Ralisch, Hevandro Colonhese Delalibera\",\"doi\":\"10.5433/1679-0359.2023v44n3p1001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methodology proposed herein for identifying potentially productive zones from yield data captured by harvester onboard sensors aims to establish a viable and easy-to-implement method for defining management zones by running statistical procedures on data from the harvest monitor. To do this, yield data from maize (2018 winter/second growing season) and soybean (2019 growing season) were converted into ɀ-score values and compared at a 99.8% confidence interval of standard normal distribution ɀ. Simultaneously, the degree of linearity was evaluated and Jackknife resampling, for removing data outside the range (outliers) established by the ɀ table (<-3.09 and >3.09). Next, yield score-ɀ algebraic mapping was performed to obtain a mean crop map, then applying three classes from the probability intervals of a plus and minus deviation, resulting in a map of potentially productive zones (below average, average and above average yield). Using this method, 5.72% of the area exhibited low yield potential, 90.71% average potential and 3.57% high yield potential. This analysis method was easy and quick to perform and provided summarized information, facilitating additional field surveys and providing a basis for decision-making.\",\"PeriodicalId\":21663,\"journal\":{\"name\":\"Semina-ciencias Agrarias\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semina-ciencias Agrarias\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5433/1679-0359.2023v44n3p1001\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semina-ciencias Agrarias","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5433/1679-0359.2023v44n3p1001","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出的方法是根据收割机机载传感器捕获的产量数据识别潜在的生产区域,旨在通过对收获监视器的数据运行统计程序,建立一种可行且易于实施的方法来定义管理区域。为此,将玉米(2018年冬季/第二生长期)和大豆(2019年生长期)的产量数据转换为ɀ-score值,并在标准正态分布的99.8%置信区间进行比较。同时进行线性度评价和Jackknife重采样,去除由表(3.09)建立的范围(异常值)外的数据。其次,进行产量评分- 代数映射,得到平均作物图,然后从正负偏差的概率区间中应用三个类别,得到潜在生产区域图(低于平均、平均和高于平均产量)。利用该方法,5.72%的面积具有低产量潜力,90.71%的面积具有平均产量潜力,3.57%的面积具有高产量潜力。该分析方法操作简单、快捷,并提供了汇总信息,便于进一步的实地调查,为决策提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metodologia para estimativa de zonas de potencial produtivo a partir de dados de produtividade
The methodology proposed herein for identifying potentially productive zones from yield data captured by harvester onboard sensors aims to establish a viable and easy-to-implement method for defining management zones by running statistical procedures on data from the harvest monitor. To do this, yield data from maize (2018 winter/second growing season) and soybean (2019 growing season) were converted into ɀ-score values and compared at a 99.8% confidence interval of standard normal distribution ɀ. Simultaneously, the degree of linearity was evaluated and Jackknife resampling, for removing data outside the range (outliers) established by the ɀ table (<-3.09 and >3.09). Next, yield score-ɀ algebraic mapping was performed to obtain a mean crop map, then applying three classes from the probability intervals of a plus and minus deviation, resulting in a map of potentially productive zones (below average, average and above average yield). Using this method, 5.72% of the area exhibited low yield potential, 90.71% average potential and 3.57% high yield potential. This analysis method was easy and quick to perform and provided summarized information, facilitating additional field surveys and providing a basis for decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semina-ciencias Agrarias
Semina-ciencias Agrarias 农林科学-农业综合
CiteScore
1.10
自引率
0.00%
发文量
148
审稿时长
3-6 weeks
期刊介绍: The Journal Semina Ciencias Agrarias (Semina: Cien. Agrar.) is a quarterly publication promoting Science and Technology and is associated with the State University of Londrina. It publishes original and review articles, as well as case reports and communications in the field of Agricultural Sciences, Animal Sciences, Food Sciences and Veterinary Medicine.
期刊最新文献
Calagem e fontes de fósforo na produtividade do capim BRS Zuri Phenotypic and biochemical characterisation and pathogenicity assessment on Galleria mellonella L. (Lepidoptera: Pyralidae) of symbionts of the entomopathogenic nematode Heterorhabditis amazonensis Andalo et al., 2006 Macroscopic changes in the mammary glands of healthy cats after progestogen administration Arranjos de cultivo para taioba sob pomar de bananeira Metodologia para estimativa de zonas de potencial produtivo a partir de dados de produtividade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1