M. Oettinger, Dajan Mimic, M. Henke, Oleg Schmunk, J. Seume
{"title":"低压涡轮轴向间隙尺寸效应的损失评估","authors":"M. Oettinger, Dajan Mimic, M. Henke, Oleg Schmunk, J. Seume","doi":"10.33737/gpps19-bj-207","DOIUrl":null,"url":null,"abstract":"The aim of this work is the decomposition, quantification, and analysis of losses related to the axial-gap size effect. Both experimental data and unsteady RANS calculations are investigated for axial gaps equal to 20%, 50% and 80% of the stator axial chord. A framework for identifying sources of loss typical in turbomachinery is derived and utilized for the low-pressure turbine presented. The analysis focuses on the dependency of these losses on the axial-gap variation. It is found that two-dimensional profile losses increase for smaller gaps due to higher wake-mixing losses and unsteady wake-blade interaction. Losses in the end-wall regions, however, decrease for smaller gaps. The total system efficiency can be described by a superposition of individual loss contributions, the optimum of which is found for the smallest gap investigated.\n\nIt is concluded that these loss contributions are characteristic for the medium aspect-ratio airfoils and operating conditions investigated. This establishes a deeper physical understanding for future investigations into the axial-gap size effect and its interdependency with other design parameters.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Loss Assessment of the Axial-Gap Size Effect in a Low-Pressure Turbine\",\"authors\":\"M. Oettinger, Dajan Mimic, M. Henke, Oleg Schmunk, J. Seume\",\"doi\":\"10.33737/gpps19-bj-207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is the decomposition, quantification, and analysis of losses related to the axial-gap size effect. Both experimental data and unsteady RANS calculations are investigated for axial gaps equal to 20%, 50% and 80% of the stator axial chord. A framework for identifying sources of loss typical in turbomachinery is derived and utilized for the low-pressure turbine presented. The analysis focuses on the dependency of these losses on the axial-gap variation. It is found that two-dimensional profile losses increase for smaller gaps due to higher wake-mixing losses and unsteady wake-blade interaction. Losses in the end-wall regions, however, decrease for smaller gaps. The total system efficiency can be described by a superposition of individual loss contributions, the optimum of which is found for the smallest gap investigated.\\n\\nIt is concluded that these loss contributions are characteristic for the medium aspect-ratio airfoils and operating conditions investigated. This establishes a deeper physical understanding for future investigations into the axial-gap size effect and its interdependency with other design parameters.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/gpps19-bj-207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/gpps19-bj-207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Loss Assessment of the Axial-Gap Size Effect in a Low-Pressure Turbine
The aim of this work is the decomposition, quantification, and analysis of losses related to the axial-gap size effect. Both experimental data and unsteady RANS calculations are investigated for axial gaps equal to 20%, 50% and 80% of the stator axial chord. A framework for identifying sources of loss typical in turbomachinery is derived and utilized for the low-pressure turbine presented. The analysis focuses on the dependency of these losses on the axial-gap variation. It is found that two-dimensional profile losses increase for smaller gaps due to higher wake-mixing losses and unsteady wake-blade interaction. Losses in the end-wall regions, however, decrease for smaller gaps. The total system efficiency can be described by a superposition of individual loss contributions, the optimum of which is found for the smallest gap investigated.
It is concluded that these loss contributions are characteristic for the medium aspect-ratio airfoils and operating conditions investigated. This establishes a deeper physical understanding for future investigations into the axial-gap size effect and its interdependency with other design parameters.