{"title":"基于CR-39的222Rn/220Rn子代监测仪理论模型的参数敏感性分析","authors":"Jun Hu, M. Hosoda, S. Tokonami","doi":"10.2478/nuka-2020-0014","DOIUrl":null,"url":null,"abstract":"Abstract The deposition-based direct indoor 222Rn and 220Rn progeny measurement techniques are mostly affected by the indoor environmental conditions, such as the ventilation, concentration of condensation nuclei, and reactions with the structure and its furnishings. In this study, a theoretical model of a direct 222Rn and 220Rn progeny monitor based on allyl diglycol carbonate (ADC or CR-39) was established to analyse the factors that influence the detection process by using the parameter sensitivity analysis. The aerosol parameters contributed the highest to the variance, followed by the aerodynamic parameters. With respect to the result of the Spearman’s correlation analysis, the aerosol-related and the room-related parameters are positive, whereas the aerodynamic parameters – which affect the turbulence of indoor deposition – are negative. It means that both the attachment process and the deposition process of 222Rn and 220Rn progenies are important to the performance of the progeny monitor.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"65 1","pages":"95 - 98"},"PeriodicalIF":0.7000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter sensitivity analysis of the theoretical model of a CR-39-based direct 222Rn/220Rn progeny monitor\",\"authors\":\"Jun Hu, M. Hosoda, S. Tokonami\",\"doi\":\"10.2478/nuka-2020-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The deposition-based direct indoor 222Rn and 220Rn progeny measurement techniques are mostly affected by the indoor environmental conditions, such as the ventilation, concentration of condensation nuclei, and reactions with the structure and its furnishings. In this study, a theoretical model of a direct 222Rn and 220Rn progeny monitor based on allyl diglycol carbonate (ADC or CR-39) was established to analyse the factors that influence the detection process by using the parameter sensitivity analysis. The aerosol parameters contributed the highest to the variance, followed by the aerodynamic parameters. With respect to the result of the Spearman’s correlation analysis, the aerosol-related and the room-related parameters are positive, whereas the aerodynamic parameters – which affect the turbulence of indoor deposition – are negative. It means that both the attachment process and the deposition process of 222Rn and 220Rn progenies are important to the performance of the progeny monitor.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":\"65 1\",\"pages\":\"95 - 98\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2020-0014\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2020-0014","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Parameter sensitivity analysis of the theoretical model of a CR-39-based direct 222Rn/220Rn progeny monitor
Abstract The deposition-based direct indoor 222Rn and 220Rn progeny measurement techniques are mostly affected by the indoor environmental conditions, such as the ventilation, concentration of condensation nuclei, and reactions with the structure and its furnishings. In this study, a theoretical model of a direct 222Rn and 220Rn progeny monitor based on allyl diglycol carbonate (ADC or CR-39) was established to analyse the factors that influence the detection process by using the parameter sensitivity analysis. The aerosol parameters contributed the highest to the variance, followed by the aerodynamic parameters. With respect to the result of the Spearman’s correlation analysis, the aerosol-related and the room-related parameters are positive, whereas the aerodynamic parameters – which affect the turbulence of indoor deposition – are negative. It means that both the attachment process and the deposition process of 222Rn and 220Rn progenies are important to the performance of the progeny monitor.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.